Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120

2002 ◽  
Vol 58 (5) ◽  
pp. 618-624 ◽  
Author(s):  
H. Masukawa, M. Mochimaru, H. Sakurai
2019 ◽  
Vol 71 (6) ◽  
pp. 2018-2027
Author(s):  
Shoko Mihara ◽  
Kazunori Sugiura ◽  
Keisuke Yoshida ◽  
Toru Hisabori

Abstract In the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120, glucose 6-phosphate dehydrogenase (G6PDH) plays an important role in producing the power for reducing nitrogenase under light conditions. Our previous study showed that thioredoxin suppresses G6PDH by reducing its activator protein OpcA, implying that G6PDH is inactivated under light conditions because thioredoxins are reduced by the photosynthetic electron transport system in cyanobacteria. To address how Anabaena sp. PCC 7120 maintains G6PDH activity even under light conditions when nitrogen fixation occurs, we investigated the redox regulation system in vegetative cells and specific nitrogen-fixing cells named heterocysts, individually. We found that thioredoxin target proteins were more oxidized in heterocysts than in vegetative cells under light conditions. Alterations in the redox regulation mechanism of heterocysts may affect the redox states of thioredoxin target proteins, including OpcA, so that G6PDH is activated in heterocysts even under light conditions.


2018 ◽  
Vol 475 (6) ◽  
pp. 1091-1105 ◽  
Author(s):  
Shoko Mihara ◽  
Hitomi Wakao ◽  
Keisuke Yoshida ◽  
Akiyoshi Higo ◽  
Kazunori Sugiura ◽  
...  

Glucose 6-phosphate dehydrogenase (G6PDH) catalyzes the first reaction in the oxidative pentose phosphate pathway. In green plant chloroplasts, G6PDH is a unique redox-regulated enzyme, since it is inactivated under the reducing conditions. This regulation is accomplished using a redox-active cysteine pair, which is conserved in plant G6PDH. The inactivation of this enzyme under conditions of light must be beneficial to prevent release of CO2 from the photosynthetic carbon fixation cycle. In the filamentous, heterocyst-forming, nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120 (Anabaena 7120), G6PDH plays a pivotal role in providing reducing power for nitrogenase, and its activity is also reported to be suppressed by reduction, though Anabaena G6PDH does not conserve the critical cysteines for regulation. Based on the thorough analyses of the redox regulation mechanisms of G6PDH from Anabaena 7120 and its activator protein OpcA, we found that m-type thioredoxin regulates G6PDH activity by changing the redox states of OpcA. Mass spectrometric analysis and mutagenesis studies indicate that Cys393 and Cys399 of OpcA are responsible for the redox regulation property of this protein. Moreover, in vivo analyses of the redox states of OpcA showed that more than half of the OpcA is present as an oxidized form, even under conditions of light, when cells are cultured under the nitrogen-fixing conditions. This redox regulation of OpcA might be necessary to provide reducing power for nitrogenase by G6PDH in heterocysts even during the day.


Author(s):  
Patrick Videau ◽  
Kaitlyn Wells ◽  
Arun Singh ◽  
Jessie Eiting ◽  
Philip Proteau ◽  
...  

Cyanobacteria are prolific producers of natural products and genome mining has shown that many orphan biosynthetic gene clusters can be found in sequenced cyanobacterial genomes. New tools and methodologies are required to investigate these biosynthetic gene clusters and here we present the use of <i>Anabaena </i>sp. strain PCC 7120 as a host for combinatorial biosynthesis of natural products using the indolactam natural products (lyngbyatoxin A, pendolmycin, and teleocidin B-4) as a test case. We were able to successfully produce all three compounds using codon optimized genes from Actinobacteria. We also introduce a new plasmid backbone based on the native <i>Anabaena</i>7120 plasmid pCC7120ζ and show that production of teleocidin B-4 can be accomplished using a two-plasmid system, which can be introduced by co-conjugation.


BIO-PROTOCOL ◽  
2016 ◽  
Vol 6 (15) ◽  
Author(s):  
Kangming Chen ◽  
Huilan Zhu ◽  
Liping Gu ◽  
Shengni Tian ◽  
Ruanbao Zhou

Sign in / Sign up

Export Citation Format

Share Document