A diverse bacterial community in an anoxic quinoline-degrading bioreactor determined by using pyrosequencing and clone library analysis

2011 ◽  
Vol 91 (2) ◽  
pp. 425-434 ◽  
Author(s):  
Xiaojun Zhang ◽  
Siqing Yue ◽  
Huihui Zhong ◽  
Weiying Hua ◽  
Ruijia Chen ◽  
...  
2002 ◽  
Vol 68 (10) ◽  
pp. 5142-5150 ◽  
Author(s):  
Hiroyuki Sekiguchi ◽  
Masataka Watanabe ◽  
Tadaatsu Nakahara ◽  
Baohua Xu ◽  
Hiroo Uchiyama

ABSTRACT Bacterial community structure along the Changjiang River (which is more than 2,500 km long) was studied by using denaturing gradient gel electrophoresis (DGGE) and clone library analysis of PCR-amplified 16S ribosomal DNA (rDNA) with universal bacterial primer sets. DGGE profiles and principal-component analysis (PCA) demonstrated that the bacterial community gradually changed from upstream to downstream in both 1998 and 1999. Bacterial diversity, as determined by the Shannon index (H′), gradually decreased from upstream to downstream. The PCA plots revealed that the differences in the bacterial communities among riverine stations were not appreciable compared with the differences in two adjacent lakes, Lake Dongting and Lake Poyang. The relative stability of the bacterial communities at the riverine stations was probably due to the buffering action of the large amount of water flowing down the river. Clone library analysis of 16S rDNA revealed that the dominant bacterial groups changed from β-proteobacteria and the Cytophaga-Flexibacter-Bacteroides group upstream to high-G+C-content gram-positive bacteria downstream and also that the bacterial community structure differed among the stations in the river and the lakes. The results obtained in this study should provide a reference for future changes caused by construction of the Three Gorges Dam.


Archaea ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Alma Siggins ◽  
Anne-Marie Enright ◽  
Florence Abram ◽  
Catherine Botting ◽  
Vincent O'Flaherty

Granular biomass from a laboratory-scale anaerobic bioreactor trial was analysed to identify changes in microbial community structure and function in response to temperature and trichloroethylene (TCE). Two bioreactors were operated at 37°C, while two were operated at 15°C. At the time of sampling, one of each temperature pair of bioreactors was exposed to process failure-inducing concentrations of TCE (60 mg L−1) while the other served as a TCE-free control. Bacterial community structure was investigated using denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone library analysis. Temperature was identified as an important factor for bacterial community composition, while minor differences were associated with trichloroethylene supplementation. Proteobacteria was the dominant phylum in all bioreactors, while clone library analysis revealed a higher proportion of Bacteroidetes-, Chloroflexi-, and Firmicutes-like clones at 15°C than at 37°C. Comparative metaproteomics in the presence and absence of TCE was carried out by two-dimensional gel electrophoresis (2-DGE), and 28 protein spots were identified, with putative functions related to cellular processes, including methanogenesis, glycolysis, the glyoxylate cycle, and the methyl malonyl pathway. A good agreement between metaproteomic species assignment and phylogenetic information was observed, with 10 of the identified proteins associated with members of the phylum Proteobacteria.


2013 ◽  
Vol 13 (2) ◽  
pp. 358-367 ◽  
Author(s):  
Yan Zhang ◽  
Qiang He

Controlling microbial contamination of drinking water is critical to public health. However, understanding of the microbial ecology of drinking water remains incomplete. Representing the first application of high-throughput sequencing in drinking water microbiology, the objective of this study is to evaluate pyrosequencing as a high-throughput technique for the characterization of bacterial diversity in drinking water in comparison with conventional clone library analysis. Pyrosequencing and clone library analysis were performed in parallel to study the bacterial community composition in drinking water samples following the concentration of microbial biomass in drinking water with ultrafiltration. Validated by clone library analysis, pyrosequencing was confirmed as a highly efficient deep-sequencing technique to characterize the bacterial diversity in drinking water. Sequences of Alphaproteobacteria and Betaproteobacteria dominated the bacterial community in drinking water with Oxalobacteraceae and Methylobacteriaceae as the most abundant bacterial families, which is consistent with the prominent abundance of these populations frequently detected in various freshwater environments where source waters originate. Bacterial populations represented by the most abundant sequences in drinking water were closely related to cultures of metabolically versatile bacterial taxa widely distributed in the environment, suggesting a potential link between environmental distribution, metabolic characteristics, and abundance in drinking water.


2014 ◽  
Vol 48 (8) ◽  
pp. 717-728 ◽  
Author(s):  
M. N. Zakaria ◽  
T. Takeshita ◽  
Y. Shibata ◽  
H. Maeda ◽  
N. Wada ◽  
...  

2013 ◽  
Vol 825 ◽  
pp. 50-53 ◽  
Author(s):  
Xing Yu Liu ◽  
Bo Wei Chen ◽  
Jian Kang Wen

The distribution and diversity of bacterial community in Zijinshan commercial non-aeration copper bioheapleaching system operated at pH 0.8 for three years were investigated. The 24 meters high heap was cut off by mechanical digger. On the trapezoidal cross-section of the heap, 9 ore samples were taken from different vertical and horizontal locations and investigated by 16S rRNA gene clone library. Another 3 liquid samples from raffinate solution pond, spray solution pond and pregnant solution pond were also applied to 16S rRNA gene clone library analysis. The retrieved 1166 clone sequences from 12 samples were mainly related to genus Acidithiobacillus (42.36%), genus Leptospirillum (37.73%) and genus Sulfobacillus (6.52%). Relative high amount of heterotrophic bacteria were distributed at the ore surface in the internal part of the heap and in the liquid samples respectively. The retrieved heterotrophic bacterial sequences were mainly related to genus Acidiphilium (accounting 11.11% to 32.00% percent in the liquid samples), genus Acidovorax (accounting 12.37% in A1 sample), genus Pelomonas (accounting 4.17% to 10.31% in several ore samples) and genus Aquabacterium (accounting 10.31% in C2 sample). Bacterial diversity in the heap was increased from the surfcae layer to the interior of the heap. The proportion of genus Leptospirillum horizontally increased from the inner to the outer part while vertically decreased from lower depth (2-3 years leaching time) to higher depth(3-6 month leaching time), and reverse correlation of genus Acidithiobacillus was found in the heap. Our finding indicated that heterotrophic bacteria may play very important roles in the commercial bioheapleaching system, and revealed high distribution of genus Leptospirillum in the outer part of this non-aerated heap.


2014 ◽  
Vol 14 (1) ◽  
Author(s):  
Fumika Hotta ◽  
Hiroshi Eguchi ◽  
Takeshi Naito ◽  
Yoshinori Mitamura ◽  
Kohei Kusujima ◽  
...  

Author(s):  
Keisuke Naito ◽  
Shingo Noguchi ◽  
Kazuhiro Yatera ◽  
Kentarou Akata ◽  
Chinatsu Nishida ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document