Strain improvement by combined UV mutagenesis and ribosome engineering and subsequent fermentation optimization for enhanced 6′-deoxy-bleomycin Z production

2017 ◽  
Vol 102 (4) ◽  
pp. 1651-1661 ◽  
Author(s):  
Xiangcheng Zhu ◽  
Jieqian Kong ◽  
Hu Yang ◽  
Rong Huang ◽  
Yong Huang ◽  
...  
Author(s):  
Zilong Wang ◽  
Runze Sun ◽  
Miao Li ◽  
Ling Liu ◽  
Yanwen Duan ◽  
...  

Yangpumicins (YPMs), eg. YPM A, F, and G, are newly discovered enediynes from Micromonospora yangpuensis DSM 45577, which could be exploited as promising payloads of antibody-drug conjugates. However, the low yield of YPMs in the wild-type strain (~1 mg/L) significantly hampers their further drug development. In this study, a combined ribosome engineering and fermentation optimization strategy has been used for yield improvement of YPMs. One gentamycin-resistant M. yangpuensis DSM 45577 strain (MY-G-1) showed higher YPMs production (7.4 ± 1.0 mg/L), while it exhibits delayed sporulation and slender mycelium under scanning electron microscopy. Whole genome re-sequencing of MY-G-1 reveals several deletion and single nucleotide polymorphism mutations, which were confirmed by PCR and DNA sequencing. Further Box–Behnken experiment and regression analysis determined that the optimal medium concentrations of soluble starch, mannitol, and pharmamedia for YPMs production in shaking flasks (10.0 ± 0.8 mg/L). Finally, the total titer of YPM A/F/G in MY-G-1 reached to 15.0 ± 2.5 mg/L in 3-L fermenters, which was about 11-fold higher than the original titer of 1.3 ± 0.3 mg/L in wild-type strain. Our study may be instrumental to develop YPMs into a clinical anticancer drug, and inspire the use of these multifaceted strategies for yield improvement in Micromonospora species.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1673
Author(s):  
Supakorn Potijun ◽  
Suparat Jaingam ◽  
Nuttha Sanevas ◽  
Srunya Vajrodaya ◽  
Anchalee Sirikhachornkit

Sterols and squalene are essential biomolecules required for the homeostasis of eukaryotic membrane permeability and fluidity. Both compounds have beneficial effects on human health. As the current sources of sterols and squalene are plant and shark oils, microalgae are suggested as more sustainable sources. Nonetheless, the high costs of production and processing still hinder the commercialization of algal cultivation. Strain improvement for higher product yield and tolerance to harsh environments is an attractive way to reduce costs. Being an intermediate in sterol synthesis, squalene is converted to squalene epoxide by squalene epoxidase. This step is inhibited by terbinafine, a commonly used antifungal drug. In yeasts, some terbinafine-resistant strains overproduced sterols, but similar microalgae strains have not been reported. Mutants that exhibit greater tolerance to terbinafine might accumulate increased sterols and squalene content, along with the ability to tolerate the drug and other stresses, which are beneficial for outdoor cultivation. To explore this possibility, terbinafine-resistant mutants were isolated in the model green microalga Chlamydomonas reinhardtii using UV mutagenesis. Three mutants were identified and all of them exhibited approximately 50 percent overproduction of sterols. Under terbinafine treatment, one of the mutants also accumulated around 50 percent higher levels of squalene. The higher accumulation of pigments and triacylglycerol were also observed. Along with resistance to terbinafine, this mutant also exhibited higher resistance to oxidative stress. Altogether, resistance to terbinafine can be used to screen for strains with increased levels of sterols or squalene in green microalgae without growth compromise.


2020 ◽  
Vol 89 (1) ◽  
pp. 1
Author(s):  
Nuttapon Songnaka ◽  
Monthon Lertcanawanichakul ◽  
Apichart Atipairin

Antibiotic-resistant infection is a major health problem, and a limited number of drugs are currently approved as antibiotics. Soil bacteria are promising sources in the search for novel antibiotics. The aim of the present study is to isolate and assess soil bacteria with anti-MRSA activity and improve their capabilities by UV mutagenesis. Soil samples from the upper south of Thailand were screened for antibacterial activity using the cross-streak method. Agar well diffusion was used to examine the activity of isolates against a spectrum of human pathogens. The most active isolate was identified by 16S rRNA sequencing, and the production kinetics and stability were investigated. The most promising isolate was mutated by UV radiation, and the resulting activity and strain stability were studied. The results show that isolates from the cross-streak method could inhibit Staphylococcus aureus TISTR 517 (94 isolates) and Escherichia coli TISTR 887 (67 isolates). Nine isolates remained active against S. aureus TISTR 517 and MRSA, and eight isolates inhibited the growth of E. coli TISTR 887 as assessed using agar well diffusion. The most active strain was Brevibacillus sp. SPR-20, which had the highest activity at 24 h of incubation. The active substances in culture supernatants exhibited more than 90% activity when subjected to treatments involving various heat, enzymes, surfactants, and pH conditions. The mutant M201 showed significantly higher activity (109.88–120.22%) and strain stability compared to the wild-type strain. In conclusion, we demonstrate that soil Brevibacillus sp. is a potential resource that can be subjected to UV mutagenesis as a useful approach for improving the production of anti-MRSA in the era of antibiotic resistance.


2013 ◽  
Vol 19 (6) ◽  
pp. 997
Author(s):  
Baihong LIU ◽  
Juan ZHANG ◽  
Zhen FANG ◽  
Wentao LIU ◽  
Guocheng DU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document