Protein expression analysis revealed a fine-tuned mechanism of in situ detoxification pathway for the tolerant industrial yeast Saccharomyces cerevisiae

2019 ◽  
Vol 103 (14) ◽  
pp. 5781-5796 ◽  
Author(s):  
Z. Lewis Liu ◽  
Xiaoqiu Huang ◽  
Qian Zhou ◽  
Jian Xu
2020 ◽  
Vol 20 (8) ◽  
Author(s):  
Julia Hitschler ◽  
Eckhard Boles

ABSTRACT Heterologous expression of 6-methylsalicylic acid synthase (MSAS) together with 6-MSA decarboxylase enables de novo production of the platform chemical and antiseptic additive 3-methylphenol (3-MP) in the yeast Saccharomyces cerevisiae. However, toxicity of 3-MP prevents higher production levels. In this study, we evaluated in vivo detoxification strategies to overcome limitations of 3-MP production. An orcinol-O-methyltransferase from Chinese rose hybrids (OOMT2) was expressed in the 3-MP producing yeast strain to convert 3-MP to 3-methylanisole (3-MA). Together with in situ extraction by dodecane of the highly volatile 3-MA this resulted in up to 211 mg/L 3-MA (1.7 mM) accumulation. Expression of a UDP-glycosyltransferase (UGT72B27) from Vitis vinifera led to the synthesis of up to 533 mg/L 3-MP as glucoside (4.9 mM). Conversion of 3-MP to 3-MA and 3-MP glucoside was not complete. Finally, deletion of phosphoglucose isomerase PGI1 together with methylation or glycosylation and feeding a fructose/glucose mixture to redirect carbon fluxes resulted in strongly increased product titers, with up to 897 mg/L 3-MA/3-MP (9 mM) and 873 mg/L 3-MP/3-MP as glucoside (8.1 mM) compared to less than 313 mg/L (2.9 mM) product titers in the wild type controls. The results show that methylation or glycosylation are promising tools to overcome limitations in further enhancing the biotechnological production of 3-MP.


Sign in / Sign up

Export Citation Format

Share Document