scholarly journals Engineering intracellular malonyl-CoA availability in microbial hosts and its impact on polyketide and fatty acid synthesis

2020 ◽  
Vol 104 (14) ◽  
pp. 6057-6065 ◽  
Author(s):  
Lars Milke ◽  
Jan Marienhagen

AbstractMalonyl-CoA is an important central metabolite serving as the basic building block for the microbial synthesis of many pharmaceutically interesting polyketides, but also fatty acid–derived compounds including biofuels. Especially Saccharomyces cerevisiae, Escherichia coli, and Corynebacterium glutamicum have been engineered towards microbial synthesis of such compounds in recent years. However, developed strains and processes often suffer from insufficient productivity. Usually, tightly regulated intracellular malonyl-CoA availability is regarded as the decisive bottleneck limiting overall product formation. Therefore, metabolic engineering towards improved malonyl-CoA availability is essential to design efficient microbial cell factories for the production of polyketides and fatty acid derivatives. This review article summarizes metabolic engineering strategies to improve intracellular malonyl-CoA formation in industrially relevant microorganisms and its impact on productivity and product range, with a focus on polyketides and other malonyl-CoA-dependent products.Key Points• Malonyl-CoA is the central building block of polyketide synthesis.• Increasing acetyl-CoA supply is pivotal to improve malonyl-CoA availability.• Improved acetyl-CoA carboxylase activity increases availability of malonyl-CoA.• Fatty acid synthesis as an ambivalent target to improve malonyl-CoA supply.

1994 ◽  
Vol 302 (1) ◽  
pp. 141-146 ◽  
Author(s):  
M J H Geelen

Short-term exposure of isolated rat hepatocytes to short- and medium-chain fatty acids led to an activation of acetyl-CoA carboxylase as measured in digitonin-permeabilized hepatocytes. Up to a certain concentration, typical for each of the fatty acids used, fatty acid-dependent activation of acetyl-CoA carboxylase coincided with an increase in the rate of fatty acid synthesis in intact hepatocytes, as determined by the incorporation of 3H from 3H2O water into fatty acids. At higher concentrations loss of stimulation of fatty acid synthesis occurred, but not the enhancement of carboxylase activity. With the fatty acids tested (C8:0-C14:0), the peak in fatty acid synthesis coincided with a peak in the level of malonyl-CoA. The onset of the stimulation of carboxylase activity coincided with the start of the peak in both fatty acid synthesis and malonyl-CoA. The longer the chain length of the fatty acid added, the lower the concentration at which the rate of fatty acid synthesis and the level of malonyl-CoA reached a peak and carboxylase activity started to become elevated. In cell suspensions incubated with increasing concentrations of fatty acids, accumulation of lactate decreased progressively. The latter observation, in combination with the fact that the activity of acetyl-CoA carboxylase is not always related to the rate of fatty acid biosynthesis, suggests that under these conditions not the activity of the carboxylase but the flux through the glycolytic sequence determines, at least in part, the rate of fatty acid synthesis de novo.


Author(s):  
John E. Cronan

SUMMARY Escherichia coli acetyl-CoA carboxylase (ACC), the enzyme responsible for synthesis of the malonyl-CoA, the building block of fatty acid synthesis, is the paradigm bacterial ACC. Many reports on the structures and stoichiometry of the four subunits comprising the active enzyme as well as on regulation of ACC activity and expression have appeared in the almost 20 years since this subject was last reviewed. This review seeks to update and expand on these reports.


1987 ◽  
Vol 243 (2) ◽  
pp. 437-442 ◽  
Author(s):  
M G Buckley ◽  
E A Rath

1. The effect of nutritional status on fatty acid synthesis in brown adipose tissue was compared with the effect of cold-exposure. Fatty acid synthesis was measured in vivo by 3H2O incorporation into tissue lipids. The activities of acetyl-CoA carboxylase and fatty acid synthetase and the tissue concentrations of malonyl-CoA and citrate were assayed. 2. In brown adipose tissue of control mice, the tissue content of malonyl-CoA was 13 nmol/g wet wt., higher than values reported in other tissues. From the total tissue water content, the minimum possible concentration was estimated to be 30 microM 3. There were parallel changes in fatty acid synthesis, malonyl-CoA content and acetyl-CoA carboxylase activity in response to starvation and re-feeding. 4. There was no correlation between measured rates of fatty acid synthesis and malonyl-CoA content and acetyl-CoA carboxylase activity in acute cold-exposure. The results suggest there is simultaneous fatty acid synthesis and oxidation in brown adipose tissue of cold-exposed mice. This is probably effected not by decreases in the malonyl-CoA content, but by increases in the concentration of free long-chain fatty acyl-CoA or enhanced peroxisomal oxidation, allowing shorter-chain fatty acids to enter the mitochondria independent of carnitine acyltransferase (overt form) activity.


1997 ◽  
Vol 327 (1) ◽  
pp. 267-273 ◽  
Author(s):  
P. Grattan ROUGHAN

Concentrations of total CoAs in chloroplasts freshly isolated from spinach and peas were 10–20 μM, assuming a stromal volume of 66 μl per mg of chlorophyll. Acetyl-CoA and CoASH constituted at least 90% of the total CoA in freshly isolated chloroplasts. For a given chloroplast preparation, the concentration of endogenous acetyl-CoA was the same when extractions were performed using HClO4, trichloroacetic acid, propan-2-ol or chloroform/methanol, and the extracts analysed by quantitative HPLC after minimal processing. During fatty acid synthesis from acetate, concentrations of CoASH within spinach and pea chloroplasts varied from less than 0.1 to 5.0 μM. Malonyl-CoA concentrations were also very low (< 0.1–3.0 μM) during fatty acid synthesis but could be calculated from radioactivity incorporated from [1-14C]acetate. Concentrations of CoASH in chloroplasts synthesizing fatty acids could be doubled in the presence of Triton X-100, suggesting that the detergent stimulates fatty acid synthesis by increasing the turnover rate of acyl-CoA. However, although taken up, exogenous CoASH (1 μM) did not stimulate fatty acid synthesis by permeabilized spinach chloroplasts. Calculated rates for acetyl-CoA synthetase, acetyl-CoA carboxylase and malonyl-CoA–acyl-carrier-protein transacylase reactions at the concentrations of metabolites measured here are < 0.1–4% of the observed rates of fatty acid synthesis from acetate by isolated chloroplasts. The results suggest that CoA and its esters are probably confined within, and channelled through, the initial stages of a fatty acid synthase multienzyme complex.


1984 ◽  
Vol 221 (3) ◽  
pp. 869-874 ◽  
Author(s):  
K F Buechler ◽  
A C Beynen ◽  
M J H Geelen

The activity of acetyl-CoA carboxylase, measured in various ways, was studied in 15000g extracts of rat liver hepatocytes and compared with the rate of fatty acid synthesis in intact hepatocytes incubated with insulin or glucagon. Hepatocyte extracts were prepared by disruption of cells with a Dounce homogenizer or by solubilization with 1.5% (v/v) Triton X-100. Sucrose-density-gradient centrifugation demonstrated that the sedimentation coefficient of acetyl-CoA carboxylase from cell extracts was 30-35S, regardless of the conditions of incubation or disruption of hepatocytes. Solubilization of cells with 1.5% Triton X-100 yielded twice as much enzyme activity (measured by [14C]bicarbonate fixation) in the sucrose-gradient fractions as did cell disruption by the Dounce homogenizer. Analysis by high-performance liquid chromatography of acetyl-CoA carboxylase reaction mixtures showed that [14C]malonyl-CoA accounted for 10-60% of the total acid-stable radioactivity, depending on the method for disrupting hepatocytes and on the preincubation of the 15000g extract, with or without citrate, before assay. Under conditions in which incubation of cells with insulin or glucagon caused an activation or inhibition, respectively, of acetyl-CoA carboxylase, only 25% of the acid-stable radioactivity was [14C]malonyl-CoA and enzyme activity was only 13% (control), 16% (insulin), and 57% (glucagon) of the rate of fatty acid synthesis. Under conditions when up to 60% of the acid-stable radioactivity was [14C]malonyl-CoA and acetyl-CoA carboxylase activity was comparable with the rate of fatty acid synthesis, there was no effect of insulin or glucagon on enzyme activity.


1976 ◽  
Vol 160 (2) ◽  
pp. 413-416 ◽  
Author(s):  
D Stansbie ◽  
R W Brownsey ◽  
M Crettaz ◽  
R M Denton

Plasma insulin concentrations in fed rats were altered acutely by administration of glucose or anti-insulin serum. Rates of fatty acid synthesis in adipose tissue and liver were estimated from the incorporation of 3H from 3H2O. In the adipose tissue dehydrogenase and acetyl-CoA carboxylase were evident. In liver, although changes in rates of fatty acid synthesis were found, the initial activity of pyruvate dehydrogenase did not alter, but small parallel changes in acetyl-CoA carboxylase activity were observed.


2004 ◽  
Vol 279 (21) ◽  
pp. 21779-21786 ◽  
Author(s):  
Ursula Hoja ◽  
Sandra Marthol ◽  
Jörg Hofmann ◽  
Sabine Stegner ◽  
Rainer Schulz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document