Elevation rather than season determines the assembly and co-occurrence patterns of soil bacterial communities in forest ecosystems of Mount Gongga

2020 ◽  
Vol 104 (17) ◽  
pp. 7589-7602 ◽  
Author(s):  
Bingjian Zhu ◽  
Chaonan Li ◽  
Junming Wang ◽  
Jiabao Li ◽  
Xiangzhen Li
2016 ◽  
Vol 83 (5) ◽  
Author(s):  
Y. Colin ◽  
O. Nicolitch ◽  
M.-P. Turpault ◽  
S. Uroz

ABSTRACT Although minerals represent important soil constituents, their impact on the diversity and structure of soil microbial communities remains poorly documented. In this study, pure mineral particles with various chemistries (i.e., obsidian, apatite, and calcite) were considered. Each mineral type was conditioned in mesh bags and incubated in soil below different tree stands (beech, coppice with standards, and Corsican pine) for 2.5 years to determine the relative impacts of mineralogy and mineral weatherability on the taxonomic and functional diversities of mineral-associated bacterial communities. After this incubation period, the minerals and the surrounding bulk soil were collected to determine mass loss and to perform soil analyses, enzymatic assays, and cultivation-dependent and -independent analyses. Notably, our 16S rRNA gene pyrosequencing analyses revealed that after the 2.5-year incubation period, the mineral-associated bacterial communities strongly differed from those of the surrounding bulk soil for all tree stands considered. When focusing only on minerals, our analyses showed that the bacterial communities associated with calcite, the less recalcitrant mineral type, significantly differed from those that colonized obsidian and apatite minerals. The cultivation-dependent analysis revealed significantly higher abundances of effective mineral-weathering bacteria on the most recalcitrant minerals (i.e., apatite and obsidian). Together, our data showed an enrichment of Betaproteobacteria and effective mineral-weathering bacteria related to the Burkholderia and Collimonas genera on the minerals, suggesting a key role for these taxa in mineral weathering and nutrient cycling in nutrient-poor forest ecosystems. IMPORTANCE Forests are usually developed on nutrient-poor and rocky soils, while nutrient-rich soils have been dedicated to agriculture. In this context, nutrient recycling and nutrient access are key processes in such environments. Deciphering how soil mineralogy influences the diversity, structure, and function of soil bacterial communities in relation to the soil conditions is crucial to better understanding the relative role of the soil bacterial communities in nutrient cycling and plant nutrition in nutrient-poor environments. The present study determined in detail the diversity and structure of bacterial communities associated with different mineral types incubated for 2.5 years in the soil under different tree species using cultivation-dependent and -independent analyses. Our data showed an enrichment of specific bacterial taxa on the minerals, specifically on the most weathered minerals, suggesting that they play key roles in mineral weathering and nutrient cycling in nutrient-poor forest ecosystems.


2021 ◽  
Vol 105 ◽  
pp. 103333
Author(s):  
Hongmiao Yu ◽  
Limin Zhang ◽  
Yao Wang ◽  
Shengnan Xu ◽  
Yue Liu ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yu-Te Lin ◽  
Yu-Fei Lin ◽  
Isheng J. Tsai ◽  
Ed-Haun Chang ◽  
Shih-Hao Jien ◽  
...  

2021 ◽  
Vol 309 ◽  
pp. 107285
Author(s):  
Mengyu Gao ◽  
Jinfeng Yang ◽  
Chunmei Liu ◽  
Bowen Gu ◽  
Meng Han ◽  
...  

mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Y. Verastegui ◽  
J. Cheng ◽  
K. Engel ◽  
D. Kolczynski ◽  
S. Mortimer ◽  
...  

ABSTRACTSoil microbial diversity represents the largest global reservoir of novel microorganisms and enzymes. In this study, we coupled functional metagenomics and DNA stable-isotope probing (DNA-SIP) using multiple plant-derived carbon substrates and diverse soils to characterize active soil bacterial communities and their glycoside hydrolase genes, which have value for industrial applications. We incubated samples from three disparate Canadian soils (tundra, temperate rainforest, and agricultural) with five native carbon (12C) or stable-isotope-labeled (13C) carbohydrates (glucose, cellobiose, xylose, arabinose, and cellulose). Indicator species analysis revealed high specificity and fidelity for many uncultured and unclassified bacterial taxa in the heavy DNA for all soils and substrates. Among characterized taxa,Actinomycetales(Salinibacterium),Rhizobiales(Devosia),Rhodospirillales(Telmatospirillum), andCaulobacterales(PhenylobacteriumandAsticcacaulis) were bacterial indicator species for the heavy substrates and soils tested. BothActinomycetalesandCaulobacterales(Phenylobacterium) were associated with metabolism of cellulose, andAlphaproteobacteriawere associated with the metabolism of arabinose; members of the orderRhizobialeswere strongly associated with the metabolism of xylose. Annotated metagenomic data suggested diverse glycoside hydrolase gene representation within the pooled heavy DNA. By screening 2,876 cloned fragments derived from the13C-labeled DNA isolated from soils incubated with cellulose, we demonstrate the power of combining DNA-SIP, multiple-displacement amplification (MDA), and functional metagenomics by efficiently isolating multiple clones with activity on carboxymethyl cellulose and fluorogenic proxy substrates for carbohydrate-active enzymes.IMPORTANCEThe ability to identify genes based on function, instead of sequence homology, allows the discovery of genes that would not be identified through sequence alone. This is arguably the most powerful application of metagenomics for the recovery of novel genes and a natural partner of the stable-isotope-probing approach for targeting active-yet-uncultured microorganisms. We expanded on previous efforts to combine stable-isotope probing and metagenomics, enriching microorganisms from multiple soils that were active in degrading plant-derived carbohydrates, followed by construction of a cellulose-based metagenomic library and recovery of glycoside hydrolases through functional metagenomics. The major advance of our study was the discovery of active-yet-uncultivated soil microorganisms and enrichment of their glycoside hydrolases. We recovered positive cosmid clones in a higher frequency than would be expected with direct metagenomic analysis of soil DNA. This study has generated an invaluable metagenomic resource that future research will exploit for genetic and enzymatic potential.


Sign in / Sign up

Export Citation Format

Share Document