Pollution-induced tolerance of soil bacterial communities in meadow and forest ecosystems polluted with heavy metals

2009 ◽  
Vol 45 (4) ◽  
pp. 363-369 ◽  
Author(s):  
Anna M. Stefanowicz ◽  
Maria Niklińska ◽  
Ryszard Laskowski
2016 ◽  
Vol 83 (5) ◽  
Author(s):  
Y. Colin ◽  
O. Nicolitch ◽  
M.-P. Turpault ◽  
S. Uroz

ABSTRACT Although minerals represent important soil constituents, their impact on the diversity and structure of soil microbial communities remains poorly documented. In this study, pure mineral particles with various chemistries (i.e., obsidian, apatite, and calcite) were considered. Each mineral type was conditioned in mesh bags and incubated in soil below different tree stands (beech, coppice with standards, and Corsican pine) for 2.5 years to determine the relative impacts of mineralogy and mineral weatherability on the taxonomic and functional diversities of mineral-associated bacterial communities. After this incubation period, the minerals and the surrounding bulk soil were collected to determine mass loss and to perform soil analyses, enzymatic assays, and cultivation-dependent and -independent analyses. Notably, our 16S rRNA gene pyrosequencing analyses revealed that after the 2.5-year incubation period, the mineral-associated bacterial communities strongly differed from those of the surrounding bulk soil for all tree stands considered. When focusing only on minerals, our analyses showed that the bacterial communities associated with calcite, the less recalcitrant mineral type, significantly differed from those that colonized obsidian and apatite minerals. The cultivation-dependent analysis revealed significantly higher abundances of effective mineral-weathering bacteria on the most recalcitrant minerals (i.e., apatite and obsidian). Together, our data showed an enrichment of Betaproteobacteria and effective mineral-weathering bacteria related to the Burkholderia and Collimonas genera on the minerals, suggesting a key role for these taxa in mineral weathering and nutrient cycling in nutrient-poor forest ecosystems. IMPORTANCE Forests are usually developed on nutrient-poor and rocky soils, while nutrient-rich soils have been dedicated to agriculture. In this context, nutrient recycling and nutrient access are key processes in such environments. Deciphering how soil mineralogy influences the diversity, structure, and function of soil bacterial communities in relation to the soil conditions is crucial to better understanding the relative role of the soil bacterial communities in nutrient cycling and plant nutrition in nutrient-poor environments. The present study determined in detail the diversity and structure of bacterial communities associated with different mineral types incubated for 2.5 years in the soil under different tree species using cultivation-dependent and -independent analyses. Our data showed an enrichment of specific bacterial taxa on the minerals, specifically on the most weathered minerals, suggesting that they play key roles in mineral weathering and nutrient cycling in nutrient-poor forest ecosystems.


1993 ◽  
Vol 16 (2) ◽  
pp. 154-156 ◽  
Author(s):  
C. Burkhardt ◽  
H. Insam ◽  
T. C. Hutchinson ◽  
H. H. Reber

2021 ◽  
Vol 105 ◽  
pp. 103333
Author(s):  
Hongmiao Yu ◽  
Limin Zhang ◽  
Yao Wang ◽  
Shengnan Xu ◽  
Yue Liu ◽  
...  

2021 ◽  
Author(s):  
Leire Jauregi ◽  
Maddi Artamendi ◽  
Lur Epelde ◽  
Fernando Blanco ◽  
Carlos Garbisu

Abstract The use of manure as a fertilizer is a common agricultural practice that can improve soil physicochemical and biological properties. However, antibiotics and their metabolites are often present, leading to the adaptation of soil bacterial communities to their presence. The aim of this study was to assess the effects of the extensively used, broad-spectrum antibiotic oxytetracycline on soil microbial community adaptation using a pollution-induced community tolerance assay. Manure-amended soil was spiked with oxytetracycline (0, 2, 20, 60, 150, and 500 mg kg−1) three times every ten days in the selection phase. The detection phase was conducted in Biolog EcoPlates with a second oxytetracycline exposure (0, 5, 20, 40, 60, and 100 mg L−1). All treatments demonstrated decreased metabolic activity after exposure to ≥ 5 mg L−1 oxytetracycline during the detection phase. Meanwhile, a significant increase in tolerance was observed following exposure to ≥ 20 mg oxytetracycline per kg soil during the selection phase. Therefore, the pollution-induced community tolerance approach with Biolog EcoPlates was a useful system for the detection of antibiotic selection pressures on soil bacterial communities. It is important to properly manage animal waste before their application to the soil to reduce the occurrence of antibiotic-resistance in the environment.


2021 ◽  
Author(s):  
Thiago Augusto Costa Silva ◽  
Marcos de Paula ◽  
Washington Santos Silva ◽  
Gustavo Augusto Lacorte

Abstract Events of soil contamination by heavy metals are mostly related to human activities that release these metals into the environment as emissions or effluents. Among the industrial activities related to heavy metal pollution, cement production plants are considered one of the most common sources. In this work we applied the HTS molecular approach called 16S rDNA metabarcoding to perform the taxonomic characterization of the prokaryotic communities of the soil surrounding three cement plants as well as two areas outside the influence of the cement plants that represented agricultural production environments free of heavy metal contamination (control areas). We applied the environmental genomics approaches known as “structural community metrics” (α- and β-diversity metrics) and “functional community metrics” (PICRUSt2 approach) to verify whether or not the effects of heavy metal contamination in the study area generated impacts on soil bacterial communities. We found that the impact related to the elevation of heavy metal concentration due to the operation of cement plants in the surrounding soil can be considered smooth according to globally recognized indices such as Igeo. However, we identified that both the taxonomic and functional structures of the communities surrounding cement plants were different from those found in the control areas. We consider that our findings contribute significantly to the general understanding of the effects of heavy metals on the soil ecosystem by showing that light contamination can disturb the dynamics of ecosystem services provided by soil, specifically those associated with microbial metabolism.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yu-Te Lin ◽  
Yu-Fei Lin ◽  
Isheng J. Tsai ◽  
Ed-Haun Chang ◽  
Shih-Hao Jien ◽  
...  

2021 ◽  
Vol 309 ◽  
pp. 107285
Author(s):  
Mengyu Gao ◽  
Jinfeng Yang ◽  
Chunmei Liu ◽  
Bowen Gu ◽  
Meng Han ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document