scholarly journals A reaction–diffusion model of spatial propagation of A$$\beta $$ oligomers in early stage Alzheimer’s disease

2021 ◽  
Vol 82 (5) ◽  
Author(s):  
Martin Andrade-Restrepo ◽  
Ionel Sorin Ciuperca ◽  
Paul Lemarre ◽  
Laurent Pujo-Menjouet ◽  
Léon Matar Tine
2020 ◽  
Author(s):  
Sue Kulason ◽  
Michael I Miller ◽  
Alain Trouvé ◽  

1.AbstractThis study introduces a reaction-diffusion model of atrophy spread across the rhinal cortex during early stages of Alzheimer’s disease. Our finite elements model of atrophy spread is motivated by histological evidence of a spatio-temporally specific pattern of neurofibrillary tau accumulation, and evidence of grey matter atrophy correlating with sites of neurofibrillary tau accumulation. The goal is to estimate disease-related parameters such as the origin of atrophy, the speed at which atrophy spreads, and the stage of the disease. We solve a constrained optimization problem using the adjoint state method and gradient descent to match modeled cortical thickness to observed cortical thickness as calculated from 3T MRI scans. Simulation testing shows that disease-related parameters can be estimated accurately with as little as 2 years of annual observations, depending on the stage of the disease. Case studies of 3 subjects suggests that we can pinpoint the origin of atrophy to the anterior transentorhinal cortex, and that the speed of atrophy spread is less than 1 mm per year. In the future, this type of modeling could be useful to stage the progression of the disease prior to the onset of clinical symptoms.2.Author SummaryMisfolded tau proteins are associated with Alzheimer’s disease. They are known to accumulate and spread across the rhinal cortex, which is an area of the temporal lobe. Recent imaging studies suggest that we can detect grey matter thinning that occurs in pattern similar to tau spread. In this study, we introduce a model of disease spread to examine where thinning begins, how fast it spreads, and the stage of the disease. The results show that the origin of thinning corresponds with the earliest known location of tau accumulation, and spreads at a rate of less than 1 mm per year. Future work may focus on staging the progression of the disease using this type of model.


2021 ◽  
Author(s):  
Tiankai Zhao ◽  
Yubing Sun ◽  
Xin Li ◽  
Mehdi Baghaee ◽  
Yuenan Wang ◽  
...  

Reaction-diffusion models have been widely used to elucidate pattern formation in developmental biology. More recently, they have also been applied in modeling cell fate patterning that mimic early-stage human development events utilizing geometrically confined pluripotent stem cells. However, the traditional reaction-diffusion equations could not satisfactorily explain the concentric ring distributions of various cell types, as they do not yield circular patterns even for circular domains. In previous mathematical models that yield ring patterns, certain conditions that lack biophysical understandings had been considered in the reaction-diffusion models. Here we hypothesize that the circular patterns are the results of the coupling of the mechanobiological factors with the traditional reaction-diffusion model. We propose two types of coupling scenarios: tissue tension-dependent diffusion flux and traction stress-dependent activation of signaling molecules. By coupling reaction-diffusion equations with the elasticity equations, we demonstrate computationally that the contraction-reaction-diffusion model can naturally yield the circular patterns.


2020 ◽  
Vol 17 (1) ◽  
pp. 93-103 ◽  
Author(s):  
Jing Ma ◽  
Yuan Gao ◽  
Wei Tang ◽  
Wei Huang ◽  
Yong Tang

Background: Studies have suggested that cognitive impairment in Alzheimer’s disease (AD) is associated with dendritic spine loss, especially in the hippocampus. Fluoxetine (FLX) has been shown to improve cognition in the early stage of AD and to be associated with diminishing synapse degeneration in the hippocampus. However, little is known about whether FLX affects the pathogenesis of AD in the middle-tolate stage and whether its effects are correlated with the amelioration of hippocampal dendritic dysfunction. Previously, it has been observed that FLX improves the spatial learning ability of middleaged APP/PS1 mice. Objective: In the present study, we further characterized the impact of FLX on dendritic spines in the hippocampus of middle-aged APP/PS1 mice. Results: It has been found that the numbers of dendritic spines in dentate gyrus (DG), CA1 and CA2/3 of hippocampus were significantly increased by FLX. Meanwhile, FLX effectively attenuated hyperphosphorylation of tau at Ser396 and elevated protein levels of postsynaptic density 95 (PSD-95) and synapsin-1 (SYN-1) in the hippocampus. Conclusion: These results indicated that the enhanced learning ability observed in FLX-treated middle-aged APP/PS1 mice might be associated with remarkable mitigation of hippocampal dendritic spine pathology by FLX and suggested that FLX might be explored as a new strategy for therapy of AD in the middle-to-late stage.


2020 ◽  
Vol 19 ◽  
pp. 103462 ◽  
Author(s):  
Hijaz Ahmad ◽  
Tufail A. Khan ◽  
Imtiaz Ahmad ◽  
Predrag S. Stanimirović ◽  
Yu-Ming Chu

Sign in / Sign up

Export Citation Format

Share Document