Dosage sensitivity of JDPs, a valuable tool for understanding their function: a case study on Caj1 overexpression-mediated filamentous growth in budding yeast

2021 ◽  
Author(s):  
Preeti Sagarika ◽  
Neha Dobriyal ◽  
Chandan Sahi
Microbiology ◽  
1997 ◽  
Vol 143 (6) ◽  
pp. 1867-1876 ◽  
Author(s):  
P. A. Radcliffe ◽  
K. M. Binley ◽  
J. Trevethick ◽  
M. Hall ◽  
P. E. Sudbery

2013 ◽  
Vol 9 (6) ◽  
pp. e1003077 ◽  
Author(s):  
Yan Zhang ◽  
Hye Kyong Kweon ◽  
Christian Shively ◽  
Anuj Kumar ◽  
Philip C. Andrews

1997 ◽  
Vol 5 (11) ◽  
pp. 450-454 ◽  
Author(s):  
Stephen J. Kron

1999 ◽  
Vol 10 (10) ◽  
pp. 3301-3316 ◽  
Author(s):  
Sung-Hee Ahn ◽  
Adriana Acurio ◽  
Stephen J. Kron

Inoculation of diploid budding yeast onto nitrogen-poor agar media stimulates a MAPK pathway to promote filamentous growth. Characteristics of filamentous cells include a specific pattern of gene expression, elongated cell shape, polar budding pattern, persistent attachment to the mother cell, and a distinct cell cycle characterized by cell size control at G2/M. Although a requirement for MAPK signaling in filamentous gene expression is well established, the role of this pathway in the regulation of morphogenesis and the cell cycle remains obscure. We find that ectopic activation of the MAPK signal pathway induces a cell cycle shift to G2/M coordinately with other changes characteristic of filamentous growth. These effects are abrogated by overexpression of the yeast mitotic cyclins Clb1 and Clb2. In turn, yeast deficient for Clb2 or carrying cdc28-1N, an allele of CDK defective for mitotic functions, display enhanced filamentous differentiation and supersensitivity to the MAPK signal. Importantly, activation of Swe1-mediated inhibitory phosphorylation of Thr-18 and/or Tyr-19 of Cdc28 is not required for the MAPK pathway to affect the G2/M delay. Mutants expressing a nonphosphorylatable mutant Cdc28 or deficient for Swe1 exhibit low-nitrogen-dependent filamentous growth and are further induced by an ectopic MAPK signal. We infer that the MAPK pathway promotes filamentous growth by a novel mechanism that inhibits mitotic cyclin/CDK complexes and thereby modulates cell shape, budding pattern, and cell-cell connections.


mSphere ◽  
2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Jacky Chow ◽  
Heather M. Dionne ◽  
Aditi Prabhakar ◽  
Amit Mehrotra ◽  
Jenn Somboonthum ◽  
...  

ABSTRACTMany fungal species, including pathogens, undergo a morphogenetic response called filamentous growth, where cells differentiate into a specialized cell type to promote nutrient foraging and surface colonization. Despite the fact that filamentous growth is required for virulence in some plant and animal pathogens, certain aspects of this behavior remain poorly understood. By examining filamentous growth in the budding yeastSaccharomyces cerevisiaeand the opportunistic pathogenCandida albicans, we identify responses where cells undergo filamentous growth in groups of cells or aggregates. InS. cerevisiae, aggregate invasive growth was regulated by signaling pathways that control normal filamentous growth. These pathways promoted aggregation in part by fostering aspects of microbial cooperation. For example, aggregate invasive growth required cellular contacts mediated by the flocculin Flo11p, which was produced at higher levels in aggregates than cells undergoing regular invasive growth. Aggregate invasive growth was also stimulated by secreted enzymes, like invertase, which produce metabolites that are shared among cells. Aggregate invasive growth was also induced by alcohols that promote density-dependent filamentous growth in yeast. Aggregate invasive growth also required highly polarized cell morphologies, which may affect the packing or organization of cells. A directed selection experiment for aggregating phenotypes uncovered roles for the fMAPK and RAS pathways, which indicates that these pathways play a general role in regulating aggregate-based responses in yeast. Our study extends the range of responses controlled by filamentation regulatory pathways and has implications in understanding aspects of fungal biology that may be relevant to fungal pathogenesis.IMPORTANCEFilamentous growth is a fungal morphogenetic response that is critical for virulence in some fungal species. Many aspects of filamentous growth remain poorly understood. We have identified an aspect of filamentous growth in the budding yeastSaccharomyces cerevisiaeand the human pathogenCandida albicanswhere cells behave collectively to invade surfaces in aggregates. These responses may reflect an extension of normal filamentous growth, as they share the same signaling pathways and effector processes. Aggregate responses may involve cooperation among individual cells, because aggregation was stimulated by cell adhesion molecules, secreted enzymes, and diffusible molecules that promote quorum sensing. Our study may provide insights into the genetic basis of collective cellular responses in fungi. The study may have ramifications in fungal pathogenesis, in situations where collective responses occur to promote virulence.


Genetics ◽  
2007 ◽  
Vol 177 (1) ◽  
pp. 205-214 ◽  
Author(s):  
Jun Ma ◽  
Rui Jin ◽  
Xiaoyu Jia ◽  
Craig J. Dobry ◽  
Li Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document