Role of yeast Rth1 nuclease and its homologs in mutation avoidance, DNA repair, and DNA replication

1998 ◽  
Vol 34 (1) ◽  
pp. 21-29 ◽  
Author(s):  
Robert E. Johnson ◽  
Gopala K. Kovvali ◽  
Louise Prakash ◽  
S. Prakash
F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 666 ◽  
Author(s):  
Rahul Bhowmick ◽  
Ian D Hickson

An unusual feature of many eukaryotic genomes is the presence of regions that appear intrinsically difficult to copy during the process of DNA replication. Curiously, the location of these difficult-to-replicate regions is often conserved between species, implying a valuable role in some aspect of genome organization or maintenance. The most prominent class of these regions in mammalian cells is defined as chromosome fragile sites, which acquired their name because of a propensity to form visible gaps/breaks on otherwise-condensed chromosomes in mitosis. This fragility is particularly apparent following perturbation of DNA replication—a phenomenon often referred to as “replication stress”. Here, we review recent data on the molecular basis for chromosome fragility and the role of fragile sites in the etiology of cancer. In particular, we highlight how studies on fragile sites have provided unexpected insights into how the DNA repair machinery assists in the completion of DNA replication.


2014 ◽  
Vol 28 (S1) ◽  
Author(s):  
Clayton Speed ◽  
Claudia Wiese ◽  
Ann Parplys ◽  
J. Robert Hatherill

2020 ◽  
Vol 48 (21) ◽  
pp. 11929-11941
Author(s):  
Tim Formosa ◽  
Fred Winston

Abstract FACT (FAcilitates Chromatin Transcription) has long been considered to be a transcription elongation factor whose ability to destabilize nucleosomes promotes RNAPII progression on chromatin templates. However, this is just one function of this histone chaperone, as FACT also functions in DNA replication. While broadly conserved among eukaryotes and essential for viability in many organisms, dependence on FACT varies widely, with some differentiated cells proliferating normally in its absence. It is therefore unclear what the core functions of FACT are, whether they differ in different circumstances, and what makes FACT essential in some situations but not others. Here, we review recent advances and propose a unifying model for FACT activity. By analogy to DNA repair, we propose that the ability of FACT to both destabilize and assemble nucleosomes allows it to monitor and restore nucleosome integrity as part of a system of chromatin repair, in which disruptions in the packaging of DNA are sensed and returned to their normal state. The requirement for FACT then depends on the level of chromatin disruption occurring in the cell, and the cell's ability to tolerate packaging defects. The role of FACT in transcription would then be just one facet of a broader system for maintaining chromatin integrity.


2019 ◽  
Vol 116 (3) ◽  
pp. 76a
Author(s):  
Manasvita Vashisth ◽  
Sangkyun Cho ◽  
Dennis Discher

Sign in / Sign up

Export Citation Format

Share Document