scholarly journals Development of somatic hybrids Solanum × michoacanum Bitter. (Rydb.) (+) S. tuberosum L. and autofused 4x S. × michoacanum plants as potential sources of late blight resistance for potato breeding

2013 ◽  
Vol 32 (8) ◽  
pp. 1231-1241 ◽  
Author(s):  
P. Smyda ◽  
H. Jakuczun ◽  
K. Dębski ◽  
J. Śliwka ◽  
R. Thieme ◽  
...  
2020 ◽  
Vol 40 (9) ◽  
Author(s):  
Emil Stefańczyk ◽  
Jarosław Plich ◽  
Marta Janiszewska ◽  
Paulina Smyda-Dajmund ◽  
Sylwester Sobkowiak ◽  
...  

Abstract Late blight is a disease with the biggest economic impact on potato cultivation worldwide. Pyramiding of the resistance genes originating from potato wild relatives is a breeding strategy that has a potential to produce potato cultivars durably resistant to late blight. Growing such cultivars would allow limiting the intensive chemical control of the disease. The goal of this work was to transfer the late blight resistance gene Rpi-rzc1 from Solanum ruiz-ceballosii to the tetraploid level of cultivated potato and to pyramid it with the Rpi-phu1 gene. We obtained two diploid and, through 4x-2x cross, a tetraploid potato population segregating for the Rpi-rzc1 presence, as well as one diploid and one tetraploid population where both genes were introgressed. In total, 754 progeny clones were tested for resistance to late blight in detached leaflet assays. Pathogen isolates avirulent on plants with both genes and virulent on plants with the Rpi-phu1 were used. The selection was assisted by two PCR markers flanking the Rpi-rzc1 gene and a newly designed, highly specific intragenic marker indicating the Rpi-phu1 gene presence. We obtained 26 diploid and 49 tetraploid potato clones with pyramid of both genes that should enhance the durability and spectrum of their late blight resistance and that can be exploited in potato breeding. The specificity of the marker for the Rpi-phu1 gene and the precision of the Rpi-rzc1 mapping were improved in this work.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 533E-534
Author(s):  
James M. Bradeen ◽  
S. Kristine Ness ◽  
Geraldine T. Haberlach ◽  
Susan M. Wielgus ◽  
John P. Helgeson

Late blight of potato, caused by the fungal pathogen Phytophthora infestans, is of great economic significance and no important U.S. potato cultivars are reliably resistant. The diploid species Solanum bulbocastanum is highly resistant to late blight, even under extreme conditions, but is sexually incompatible with potato. We have generated potato + S. bulbocastanum somatic hybrids. These hexaploid hybrids are highly resistant to late blight and progeny from two successive backcrosses to cultivated potato are either fully resistant or susceptible. The advanced generations are morphologically similar to potato. We have initiated mapping efforts to identify bulbocastanum chromosomal regions responsible for late blight resistance. Using RFLPs, RAPDs, and AFLPs, we identified a single chromosomal region (i.e., single gene or group of linked genes) on chromosome 8 that accounts for 62.2% of the observed resistance. The tomato cDNA clone CT88 cosegregates with late blight resistance in our material and was used to isolate a homeologous BAC clone from a S. bulbocastanum library. Our current efforts include mapping resistance in both fusion-derived and diploid S. bulbocastanum materials via map merging. As markers linked to late blight resistance are identified, we will attempt to convert them to marker forms useful for large-scale breeding efforts. To date, we have successfully converted RAPD and RFLP markers to SCAR and CAPS marker forms. Finally, continued fine mapping and BAC clone characterization will enable future map-based cloning efforts.


2021 ◽  
Author(s):  
P. Keijzer ◽  
E. T. Lammerts van Bueren ◽  
C. J. M. Engelen ◽  
R. C. B. Hutten

AbstractIn organic potato production, the need for varieties with durable late blight resistance developed through classical breeding programmes is urgent. Besides late blight resistance, other variety characteristics needed in organic potato production are early canopy closure for weed suppression and good tuber dormancy to eliminate the need for (chemical) sprouting inhibition during storage, amongst others. This paper is a unique example of collaboration between researchers, farmers and professional breeders of both large, medium and small breeding companies. The aim of the resulting breeding project, Bioimpuls, was to provide a substantial impulse to both the organic and conventional potato breeding sector by enlarging the access to various sources of late blight resistance. The Bioimpuls activities include providing true seed populations for variety selection with five available sources of R-genes against Phytophthora infestans, early and advanced introgression breeding with six new R-genes, and education and communication. The results achieved over the 11-year period (2009–2019) are analysed. Many true seed populations containing multiple resistance genes are produced and selected, and a constant flow of breeding clones is entering the evaluation and positioning trials of companies. However, it will still take a considerable amount of time before varieties with stacked resistance genes will replace the new resistant single gene varieties entering the market in the next few years. Five out of six new sources of R-genes need more years of backcrossing before they are ready for commercial use. Bioimpuls successfully introduced a training course for farmer breeders, and published a manual for potato breeding.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nam Phuong Kieu ◽  
Marit Lenman ◽  
Eu Sheng Wang ◽  
Bent Larsen Petersen ◽  
Erik Andreasson

AbstractThe use of pathogen-resistant cultivars is expected to increase yield and decrease fungicide use in agriculture. However, in potato breeding, increased resistance obtained via resistance genes (R-genes) is hampered because R-gene(s) are often specific for a pathogen race and can be quickly overcome by the evolution of the pathogen. In parallel, susceptibility genes (S-genes) are important for pathogenesis, and loss of S-gene function confers increased resistance in several plants, such as rice, wheat, citrus and tomatoes. In this article, we present the mutation and screening of seven putative S-genes in potatoes, including two DMR6 potato homologues. Using a CRISPR/Cas9 system, which conferred co-expression of two guide RNAs, tetra-allelic deletion mutants were generated and resistance against late blight was assayed in the plants. Functional knockouts of StDND1, StCHL1, and DMG400000582 (StDMR6-1) generated potatoes with increased resistance against late blight. Plants mutated in StDND1 showed pleiotropic effects, whereas StDMR6-1 and StCHL1 mutated plants did not exhibit any growth phenotype, making them good candidates for further agricultural studies. Additionally, we showed that DMG401026923 (here denoted StDMR6-2) knockout mutants did not demonstrate any increased late blight resistance, but exhibited a growth phenotype, indicating that StDMR6-1 and StDMR6-2 have different functions. To the best of our knowledge, this is the first report on the mutation and screening of putative S-genes in potatoes, including two DMR6 potato homologues.


Sign in / Sign up

Export Citation Format

Share Document