scholarly journals Can sea urchin grazing of kelp forests in the Arctic make rocky shore systems more vulnerable to oil spills?

Polar Biology ◽  
2019 ◽  
Vol 42 (3) ◽  
pp. 557-567 ◽  
Author(s):  
Hartvig Christie ◽  
Trine Bekkby ◽  
Kjell Magnus Norderhaug ◽  
Jonny Beyer ◽  
Nina Mari Jørgensen
2019 ◽  
Vol 73 (1) ◽  
Author(s):  
Sarah B. Traiger

Abstract Sea urchin grazing rates can strongly impact kelp bed persistence. Elevated water temperature associated with climate change may increase grazing rates; however, these effects may interact with local stressors such as sedimentation, which may inhibit grazing. In Alaska, glacial melt is increasing with climate change, resulting in higher sedimentation rates, which are often associated with lower grazer abundance and shifts in macroalgal species composition. The short-term effects of elevated temperature and sediment on grazing were investigated for the green sea urchin, Strongylocentrotus droebachiensis (O.F. Müller, 1776), in Kachemak Bay, Alaska (59° 37′ 45.00″ N, 151° 36′ 38.40″ W) in early May 2017. Feeding assays were conducted at ambient temperature (6.9–9.8 °C) and at 13.8–14.6 °C with no sediment and under a high sediment load. Grazing rates significantly decreased in the presence of sediment, but were not significantly affected by temperature. Along with sediment impacts on settlement and post-settlement survival, grazing inhibition may contribute to the commonly observed pattern of decreased macroinvertebrate grazer abundance in areas of high sedimentation and increased sedimentation in the future may alter sea urchin grazing in kelp forests.


Polar Biology ◽  
2021 ◽  
Vol 44 (3) ◽  
pp. 575-586
Author(s):  
Pepijn De Vries ◽  
Jacqueline Tamis ◽  
Jasmine Nahrgang ◽  
Marianne Frantzen ◽  
Robbert Jak ◽  
...  

AbstractIn order to assess the potential impact from oil spills and decide the optimal response actions, prediction of population level effects of key resources is crucial. These assessments are usually based on acute toxicity data combined with precautionary assumptions because chronic data are often lacking. To better understand the consequences of applying precautionary approaches, two approaches for assessing population level effects on the Arctic keystone species polar cod (Boreogadus saida) were compared: a precautionary approach, where all exposed individuals die when exposed above a defined threshold concentration, and a refined (full-dose-response) approach. A matrix model was used to assess the population recovery duration of scenarios with various but constant exposure concentrations, durations and temperatures. The difference between the two approaches was largest for exposures with relatively low concentrations and short durations. Here, the recovery duration for the refined approach was less than eight times that found for the precautionary approach. Quantifying these differences helps to understand the consequences of precautionary assumptions applied to environmental risk assessment used in oil spill response decision making and it can feed into the discussion about the need for more chronic toxicity testing. An elasticity analysis of our model identified embryo and larval survival as crucial processes in the life cycle of polar cod and the impact assessment of oil spills on its population.


Science ◽  
1974 ◽  
Vol 186 (4166) ◽  
pp. 843-845
Author(s):  
R. C. Ayers ◽  
H. O. Jahns ◽  
J. L. Glaeser

Science ◽  
2009 ◽  
Vol 325 (5946) ◽  
pp. 1335-1335 ◽  
Author(s):  
M. Torrice
Keyword(s):  

1972 ◽  
Author(s):  
J.L. Glaeser ◽  
George P. Vance
Keyword(s):  

2002 ◽  
Vol 29 (4) ◽  
pp. 436-459 ◽  
Author(s):  
Robert S. Steneck ◽  
Michael H. Graham ◽  
Bruce J. Bourque ◽  
Debbie Corbett ◽  
Jon M. Erlandson ◽  
...  

Kelp forests are phyletically diverse, structurally complex and highly productive components of coldwater rocky marine coastlines. This paper reviews the conditions in which kelp forests develop globally and where, why and at what rate they become deforested. The ecology and long archaeological history of kelp forests are examined through case studies from southern California, the Aleutian Islands and the western North Atlantic, well-studied locations that represent the widest possible range in kelp forest biodiversity. Global distribution of kelp forests is physiologically constrained by light at high latitudes and by nutrients, warm temperatures and other macrophytes at low latitudes. Within mid-latitude belts (roughly 40–60° latitude in both hemispheres) well-developed kelp forests are most threatened by herbivory, usually from sea urchins. Overfishing and extirpation of highly valued vertebrate apex predators often triggered herbivore population increases, leading to widespread kelp deforestation. Such deforestations have the most profound and lasting impacts on species-depauperate systems, such as those in Alaska and the western North Atlantic. Globally urchin-induced deforestation has been increasing over the past 2–3 decades. Continued fishing down of coastal food webs has resulted in shifting harvesting targets from apex predators to their invertebrate prey, including kelp-grazing herbivores. The recent global expansion of sea urchin harvesting has led to the widespread extirpation of this herbivore, and kelp forests have returned in some locations but, for the first time, these forests are devoid of vertebrate apex predators. In the western North Atlantic, large predatory crabs have recently filled this void and they have become the new apex predator in this system. Similar shifts from fish- to crab-dominance may have occurred in coastal zones of the United Kingdom and Japan, where large predatory finfish were extirpated long ago. Three North American case studies of kelp forests were examined to determine their long history with humans and project the status of future kelp forests to the year 2025. Fishing impacts on kelp forest systems have been both profound and much longer in duration than previously thought. Archaeological data suggest that coastal peoples exploited kelp forest organisms for thousands of years, occasionally resulting in localized losses of apex predators, outbreaks of sea urchin populations and probably small-scale deforestation. Over the past two centuries, commercial exploitation for export led to the extirpation of sea urchin predators, such as the sea otter in the North Pacific and predatory fishes like the cod in the North Atlantic. The large-scale removal of predators for export markets increased sea urchin abundances and promoted the decline of kelp forests over vast areas. Despite southern California having one of the longest known associations with coastal kelp forests, widespread deforestation is rare. It is possible that functional redundancies among predators and herbivores make this most diverse system most stable. Such biodiverse kelp forests may also resist invasion from non-native species. In the species-depauperate western North Atlantic, introduced algal competitors carpet the benthos and threaten future kelp dominance. There, other non-native herbivores and predators have become established and dominant components of this system. Climate changes have had measurable impacts on kelp forest ecosystems and efforts to control the emission of greenhouse gasses should be a global priority. However, overfishing appears to be the greatest manageable threat to kelp forest ecosystems over the 2025 time horizon. Management should focus on minimizing fishing impacts and restoring populations of functionally important species in these systems.


Sign in / Sign up

Export Citation Format

Share Document