Impact of MRI technique on clinical decision-making in patients with liver iron overload: comparison of FerriScan- versus R2*-derived liver iron concentration

2020 ◽  
Vol 30 (4) ◽  
pp. 1959-1968 ◽  
Author(s):  
Marshall S. Sussman ◽  
Richard Ward ◽  
Kevin H. M. Kuo ◽  
George Tomlinson ◽  
Kartik S. Jhaveri
Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5407-5407 ◽  
Author(s):  
Vasilios Perifanis ◽  
Efthimia Vlachaki ◽  
Emmanouil Sinakos ◽  
Ioanna Tsatra ◽  
Maria Raptopoulou-Gigi ◽  
...  

Abstract Although it is life saving, transfusion therapy has resulted in the majority of thalassemia patients being at risk for hemosiderosis-induced organ damage. Liver Iron Concentration (LIC) assessed by liver biopsy is considered the most accurate and sensitive method for determining body iron burden in patients with iron overload. The development of liver fibrosis is more closely related to liver iron concentration. Transient elastography (FibroScan, FS), which measures liver stiffness (LS), is a novel, noninvasive method to assess liver fibrosis. Whether FS is useful in the detection of preexisting liver iron overload in patients presenting with thalassaemia major without chronic viral hepatitis, is unclear. On the other hand, Magnetic Resonance Imaging (MRI) is a relatively inexpensive, widely available but more time consuming method that has long been considered as a useful tool for the non-invasive estimation of tissue iron content in multiple transfused patients with thalassemia. Aim: To study the prevalence and severity of liver fibrosis of transfusion dependent thalassaemia major patients, and correlate the MRI.LIC with the measurements of FS. Methods-Patients: The applicability for FS (Echosens, Paris, France) was defined as at least 10 valid measures and a success rate (number of valid measures/total number of LS Measures, LSM) ≥60% and a ratio of interquartile range/stiffness ≤0,2. Most subjects with FS scores below 5.1 kilopascals (kPa) are considered to have minimal fibrosis (grade F0 or F1, METAVIR score) according to the literature. The cut off FS values for diagnosing different stages of hepatic fibrosis were defined as > 7.9kPa for F≥2, > 10.3kPa for F≥3 and > 11.9kPa for F=4. A total of 43 thalassaemic patients 23 males/20 females, median age 26,8±4,9 years, regularly transfused (pre-transfusion haemoglobin 9,7g/dl) were included in the study. All patients were hepatitis C virus (HCV) negative and chelated with different drugs (13 on deferasirox, 12 on deferiprone, 5 on desferrioxamine and 13 on combined therapy). Median ferritin levels were 1552±1576ng/ml. Liver tests (AST, ALT, γGT and Alkaline Phosphatase) were done simultaneously to all patients. Twenty-two of the 43 patients underwent liver iron determination (LIC) simultaneously by two methods: T2* Magnetic Imaging (T2*MRI) assessment and by calculation of MR-Hepatic Iron Concentration (MR.HIC) values (based on an algorithm developed by Gandon et al (Lancet 2004), using liver to muscle ratios in five axial gradient-echo sequences). T-test was used in statistical analysis to compare means. Results: Applicability of LSM was 100%. Overall median LSM was 8,25±6,05kPa (range 4–40,3kPa). Nineteen (44,1%) patients had FS<6,1kPa (notably 8/19 patients below 5,1kPa), 13 (30,2%) had <7,9kPa, 4 (9,3%) had <10,3kPa, 2 (4,7%) had <11,9kPa and 5 (11,7%) above 11,9kPa. Total FS correlated with Ferritin (r=0,39, p=0,008). Using the cutt-off value of 6,1 kPa for FS measurements, patients were divided in two groups with different ferritin levels: A (<6,1kPa) 1039±758ng/ml vs B (>6,1kPa) 1833±1742ng/ml, p<0,03. FS values of the three different major therapy groups did not differ significantly. FS (22pts) correlated negatively with T2*MRI results (r=−0,39, p=0,07) and positively with MR.HIC results (r=0,49, p=0,02). There was no correlation with liver function tests. Conclusions: Severe haemosiderosis and hepatic fibrosis are common in patients with thalassaemia major despite the use of chelation therapy and the absence of HCV. Elastography has several characteristics that make it a desirable method for assessing hepatic fibrosis. In addition to being noninvasive and painless, it is also quick, inexpensive, and produces consistent results. It can also be useful as an alternative to check for liver iron overload, as abnormal results predict heavy liver iron overload. Further longitudinal and prospective studies are necessary to confirm these preliminary data.


Author(s):  
Jose Alustiza ◽  
Agustin Castiella ◽  
Eva Zapata ◽  
Iratxe Urreta ◽  
Emma Salvador ◽  
...  

Determination of liver iron concentration by magnetic resonance imaging (MRI) is becoming the new technique of choice for the diagnosis of iron overload in hereditary haemochromatosis and other liver iron surcharge diseases. Determination of hepatic iron concentration obtained by liver biopsy has been the gold standard for years. The development of MRI techniques, via signal intensity ratio methods or relaxometry, has provided a non-invasive and more accurate approach to the diagnosis of liver iron overload. This article reviews the available MRI methods for the determination of liver iron concentration and also evaluates the technique for the diagnosis and quantification of iron overload in different clinical practice scenarios.


Hematology ◽  
2013 ◽  
Vol 2013 (1) ◽  
pp. 447-456 ◽  
Author(s):  
John Porter ◽  
Maciej Garbowski

Abstract The aims of this review are to highlight the mechanisms and consequences of iron distribution that are most relevant to transfused sickle cell disease (SCD) patients and to address the particular challenges in the monitoring and treatment of iron overload. In contrast to many inherited anemias, in SCD, iron overload does not occur without blood transfusion. The rate of iron loading in SCD depends on the blood transfusion regime: with simple hypertransfusion regimes, rates approximate to thalassemia major, but iron loading can be minimal with automated erythrocyte apheresis. The consequences of transfusional iron overload largely reflect the distribution of storage iron. In SCD, a lower proportion of transfused iron distributes extrahepatically and occurs later than in thalassemia major, so complications of iron overload to the heart and endocrine system are less common. We discuss the mechanisms by which these differences may be mediated. Treatment with iron chelation and monitoring of transfusional iron overload in SCD aim principally at controlling liver iron, thereby reducing the risk of cirrhosis and hepatocellular carcinoma. Monitoring of liver iron concentration pretreatment and in response to chelation can be estimated using serum ferritin, but noninvasive measurement of liver iron concentration using validated and widely available MRI techniques reduces the risk of under- or overtreatment. The optimal use of chelation regimes to achieve these goals is described.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3726-3726
Author(s):  
Peter Nielsen ◽  
Tim H. Bruemmendorf ◽  
Regine Grosse ◽  
Rainer Engelhardt ◽  
Nicolaus Kroeger ◽  
...  

Abstract Patients with myelodysplastic syndromes (MDS), osteomyelofibrosis (OMF), or severe aplastic anemia (SAA) suffer from ineffective erythropoiesis due to pancytopenia, which is treated with red blood cell transfusion leading to iron overload. Especially in low-risk patients with mean survival times of > 5 years, potentially toxic levels of liver iron concentration (LIC) can be reached. We hypothesize that the higher morbidity seen in transfused patients may be influenced by iron toxicity. Following a meeting in Nagasaki 2005, a consensus statement on iron overload in myelodysplastic syndromes has been published, however, there is still no common agreement about the initiation of chelation treatment in MDS patients. In the present study, a total of 67 transfused patients with MDS (n = 20, age: 17 – 75 y), OMF (n = 4, age: 48 – 68 y), SAA (n = 43, age: 5 – 64 y) were measured by SQUID biomagnetic liver susceptometry (BLS) and their liver and spleen volumes were scanned by ultrasound at the Hamburg biosusceptometer. Less than 50 % were treated with DFO. LIC (μg/g-liver wet weight, conversion factor of about 6 for μg/g-dry weight) and volume data were retrospectively analyzed in comparison to ferritin values. Additionally, 15 patients (age: 8 – 55 y) between 1 and 78 months after hematopoietic cell transplantation (HCT) were measured and analyzed. LIC values ranged from 149 to 8404 with a median value of 2705 μg/g-liver, while serum ferritin (SF) concentrations were between 500 and 10396 μg/l with a median ratio of SF/LIC = 0.9 [(μg/l)/(μg/g-liver)] (range: 0.4 to 5.2). The Spearman rank correlation between SF and LIC was found to be highly significant (RS = 0.80, p < 0.0001), however, prediction by the linear regression LIC = (0.83± 0.08)·SF was poor (R2 = 0.5) as found also in other iron overload diseases. Although iron toxicity is a long-term risk factor, progression of hepatic fibrosis has been observed for LIC > 16 mg/g dry weight or 2667 μg/g-liver (Angelucci et al. Blood2002; 100:17–21) within 60 months and significant cardiac iron levels have been observed for LIC > 350 μmol/g or 3258 μg/g-liver (Jensen et al. Blood2003; 101:4632-9). The Angelucci threshold of hepatic fibrosis progression was exceeded by 51 % of our patients, while 39 % were exceeding the Jensen threshold of potential risk of cardiac iron toxicity. The total body iron burden is even higher as more than 50 % of the patients had hepatomegaly (median liver enlargement factor 1.2 of normal). A liver iron concentration of about 3000 μg/g-liver or 18 mg/g-dry weight has to be seen as latest intervention threshold for chelation treatment as MDS patients are affected by more than one risk factor. A more secure intervention threshold would be a LIC of 1000 μg/g-liver or 4 – 6 mg/g-dry weight, corresponding with a ferritin level of 900 μg/l for transfused MDS patients. Such a LIC value is not exceeded by most subjects with heterozygous HFE-associated hemochromatosis and is well tolerated without treatment during life-time. Non-invasive liver iron quantification offers a more reliable information on the individual range of iron loading in MDS which is also important for a more rational indication for a chelation treatment in a given patient.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3493-3493
Author(s):  
Martin Wermke ◽  
Jan Moritz Middeke ◽  
Nona Shayegi ◽  
Verena Plodeck ◽  
Michael Laniado ◽  
...  

Abstract Abstract 3493 An increased risk for GvHD, infections and liver toxicity after transplant has been attributed to iron overload (defined by serum ferritin) of MDS and AML patients prior to allogeneic hematopoietic stem cell transplantation (allo-HSCT). Nevertheless, the reason for this observation is not very well defined. Consequently, there is a debate whether to use iron chelators in these patients prior to allo-HSCT. In fact, serum ferritin levels and transfusion history are commonly used to guide iron depletion strategies. Both parameters may inadequately reflect body iron stores in MDS and AML patients prior to allo-HSCT. Recently, quantitative magnetic resonance imaging (MRI) was introduced as a tool for direct measurement of liver iron. We therefore aimed at evaluating the accurateness of different strategies for determining iron overload in MDS and AML patients prior to allo-HSCT. Serologic parameters of iron overload (ferritin, iron, transferrin, transferrin saturation, soluble transferrin receptor) and transfusion history were obtained prospectively in MDS or AML patients prior to allo-SCT. In parallel, liver iron content was measured by MRI according to the method described by Gandon (Lancet 2004) and Rose (Eur J Haematol 2006), respectively. A total of 20 AML and 9 MDS patients (median age 59 years, range: 23–74 years) undergoing allo-HSCT have been evaluated so far. The median ferritin concentration was 2237 μg/l (range 572–6594 μg/l) and patients had received a median of 20 transfusions (range 6–127) before transplantation. Serum ferritin was not significantly correlated with transfusion burden (t = 0.207, p = 0.119) but as expected with the concentration of C-reactive protein (t = 0.385, p = 0.003). Median liver iron concentration measured by MRI was 150 μmol/g (range 40–300 μmol/g, normal: < 36 μmol/g). A weak but significant correlation was found between liver iron concentration and ferritin (t = 0.354; p = 0.008). The strength of the correlation was diminished by the influence of 5 outliers with high ferritin concentrations but rather low liver iron content (Figure 1). The same applied to transfusion history which was also only weakly associated with liver iron content (t = 0.365; p = 0.007). Levels of transferrin, transferrin saturation, total iron and soluble transferrin receptor did not predict for liver iron concentration. Our data suggest that serum ferritin or transfusion history cannot be regarded as robust surrogates for the actual iron overload in MDS or AML patients. Therefore we advocate caution when using one of these parameters as the only trigger for chelation therapy or as a risk-factor to predict outcome after allo-HSCT. Figure 1. Correlation of Liver iron content with Ferritin. Figure 1. Correlation of Liver iron content with Ferritin. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5735-5735
Author(s):  
Brittany Paige DePriest ◽  
Mikey Huang

Abstract Background: Owing to improved strategies in pediatric bone marrow transplantation, a larger number of transplanted children are now becoming long term survivors. These post-transplant patients remain at risk for late complications including iron overload, which has the potential to impair quality of life and adversely affect later outcomes. While literature has previously focused on iron overload in the adult sickle cell patient, there has been minimal research into its effect on the pediatric bone marrow transplant recipient. Thus, no current guidelines exist for screening, management or treatment of iron overload in this patient population. Our study focuses specifically on this population and reports the relationship between number of PRBC transfusions and current diagnostic tools. Objectives: To identify the presence or absence of correlation between the number of red blood cell transfusions and indicators of iron overload via two different modalities: ferritin values and the T2* MRI liver iron concentration (Ferriscan). Methods: A retrospective chart review of the allogeneic pediatric bone marrow transplant patients over the past 5 years at a single center (n = 32). Quantitative data obtained which included number of PRBC transfusions, ferritin, and T2* MRI LIC. Correlation analysis subsequently performed between pre-and post-transplant values. Results: There was significant (p < 0.001) moderate correlation (r = 0.62) between the number of pre-transplant PRBC transfusions and the pre-transplant ferritin value. No significant (p >0.1) correlation between the number of pre-transplant PRBC transfusions and the pre-transplant T2* LIC. Also, no significant (p > 0.1) correlation between pre-transplant ferritin and T2* LIC. The total number of PRBC transfusions up to 100 days post-transplant did have significant (p = 0.008) moderate correlation (r= 0.62) with post-transplant ferritin values. There was significant (p = 0.01) strong correlation (r= 0.87) between the total number of PRBC transfusions up to 100 days post-transplant with post-transplant T2*LIC values. No significant correlation (p > 0.1) between post-transplant ferritin and T2* MRI LIC values. Conclusions: In terms of modalities utilized for evaluation of iron overload in the pediatric allogeneic BMT population, no significant correlation exists between ferritin values and T2* MRI liver iron concentration values. While ferritin is an acceptable screening tool the post-transplant T2*MRI LIC is a more accurate diagnostic indicator of transfusion burden. Future studies will be used to explore associated adverse outcomes of patients diagnosed with iron overload. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document