Abstract
Restriction site variation in mitochondrial DNA (mtDNA) of the American oyster (Crassostrea virginica) was surveyed in continuously distributed populations sampled from the Gulf of St. Lawrence, Canada, to Brownsville, Texas. mtDNA clonal diversity was high, with 82 different haplotypes revealed among 212 oysters with 13 endonucleases. The mtDNA clones grouped into two distinct genetic arrays (estimated to differ by about 2.6% in nucleotide sequence) that characterized oysters collected north vs. south of a region on the Atlantic mid-coast of Florida. The population genetic "break" in mtDNA contrasts with previous reports of near uniformity of nuclear (allozyme) allele frequencies throughout the range of the species, but agrees closely with the magnitude and pattern of mtDNA differentiation reported in other estuarine species in the southeastern United States. This concordance of mtDNA phylogenetic pattern across independently evolving species provides strong evidence for vicariant biogeographic processes in initiating intraspecific population structure. The post-Miocene ecological history of the region suggests that reduced precipitation levels in an enlarged Floridian peninsula may have created discontinuities in suitable estuarine habitat for oysters during glacial periods, and that today such population separations are maintained by the combined influence of ecological gradients and oceanic currents on larval dispersal. The results are consistent with the hypothesis that historical vicariant events, in conjunction with contemporary environmental influences on gene flow, can result in genetic discontinuities in continuously distributed species with high dispersal capability.