scholarly journals Genetic variation in the small bivalve Nuculana inaequisculpta along a retreating glacier fjord, King George Island, Antarctica

2021 ◽  
Vol 56 (2) ◽  
pp. 151-156
Author(s):  
Carlos P. Muñoz-Ramírez ◽  
Maribel Beltrán-Concha ◽  
Karla Pérez-Araneda ◽  
Chester J. Sands ◽  
David K. A. Barnes ◽  
...  

Climate change is strongly influencing regions of Antarctica but the consequences on microevolutionary processes have been little studied. Patterns of population genetic diversity were analysed in the Antarctic bivalve Nuculana inaequisculpta (Protobranchia: Nuculanidae) from a fjord with 70 years of documented climate-forced glacier retreat. Thirty-nine individuals from five sites at different distances from the glacier terminus were collected, and the COI gene was sequenced from each individual. No statistically significant genetic differentiation was found between sites nor a significant correlation between the proximity of glaciers and genetic diversity, suggesting a high dispersal capability and therefore, a planktonic larval stage for this species. Nevertheless, we encourage increasing the sample size and number of loci in future studies to confirm our findings.

2018 ◽  
Vol 109 (1) ◽  
pp. 62-71 ◽  
Author(s):  
K. Lv ◽  
J.-R. Wang ◽  
T.-Q. Li ◽  
J. Zhou ◽  
J.-Q. Gu ◽  
...  

AbstractThousand Island Lake (TIL) is a typical fragmented landscape and an ideal model to study ecological effects of fragmentation. Partial fragments of the mitochondrial cytochrome oxidase subunit I gene of 23 island populations of Dendrolimus punctatus in TIL were sequenced, 141 haplotypes being identified. The number of haplotypes increased significantly with the increase in island area and shape index, whereas no significant correlation was detected between three island attributes (area, shape and isolation) and haplotype diversity. However, the correlation with number of haplotypes was no longer significant when the ‘outlier’ island JSD (the largest island) was not included. Additionally, we found no significant relationship between geographic distance and genetic distance. Geographic isolation did not obstruct the gene flow among D. punctatus populations, which might be because of the high dispersal capacity of this pine moth. Fragmentation resulted in the conversion of large and continuous habitats into isolated, small and insular patches, which was the primary effect on the genetic diversity of D. punctatus in TIL. The conclusion to emphasize from our research is that habitat fragmentation reduced the biological genetic diversity to some extent, further demonstrating the importance of habitat continuity in biodiversity protection.


2020 ◽  
Vol 131 (3) ◽  
pp. 566-574
Author(s):  
Keiichi Kakui ◽  
Hidetaka Nomaki ◽  
Hironori Komatsu ◽  
Yoshihiro Fujiwara

Abstract Information on the extent, diversity and connectivity of populations is lacking for most deep-sea invertebrates. Species of the order Tanaidacea (Crustacea), one of the most diverse and abundant macrofaunal groups in the deep sea, are benthic, lack a planktonic larval stage, and thus would be expected to have narrow distributional ranges. However, with molecular evidence from the COI gene, we show here that the deep-sea tanaidacean Carpoapseudes spinigena has a distributional range spanning at least 3700 km, from off northern Japan to the south-eastern Bering Sea. Living individuals found in a sediment core indicated that the species is a sedentary burrower. COI analyses revealed a low level of genetic diversity overall, and low differentiation (p-distance, 0.2–0.8%) between the Japan and Bering Sea populations. One hypothesis to explain the low genetic diversity over a broad region is that the Japan population was founded by individuals transported by ocean currents from the Bering Sea. However, due to limited data, other explanations cannot be ruled out. Our results indicate that continued sampling is of fundamental importance to understanding how genetic and taxonomic diversity originate and are maintained in the deep sea.


Diversity ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 40
Author(s):  
Evgeny Genelt-Yanovskiy ◽  
Yixuan Li ◽  
Ekaterina Stratanenko ◽  
Natalia Zhuravleva ◽  
Natalia Strelkova ◽  
...  

Ophiura sarsii is a common brittle star species across the Arctic and Sub-Arctic regions of the Atlantic and the Pacific oceans. Ophiurasarsii is among the dominant echinoderms in the Barents Sea. We studied the genetic diversity of O.sarsii by sequencing the 548 bp fragment of the mitochondrial COI gene. Ophiurasarsii demonstrated high genetic diversity in the Barents Sea. Both major Atlantic mtDNA lineages were present in the Barents Sea and were evenly distributed between the northern waters around Svalbard archipelago and the southern part near Murmansk coast of Kola Peninsula. Both regions, and other parts of the O.sarsii range, were characterized by high haplotype diversity with a significant number of private haplotypes being mostly satellites to the two dominant haplotypes, each belonging to a different mtDNA clade. Demographic analyses indicated that the demographic and spatial expansion of O.sarsii in the Barents Sea most plausibly has started in the Bølling–Allerød interstadial during the deglaciation of the western margin of the Barents Sea.


2003 ◽  
Vol 69 (12) ◽  
pp. 7409-7413 ◽  
Author(s):  
F. M. Colles ◽  
K. Jones ◽  
R. M. Harding ◽  
M. C. J. Maiden

ABSTRACT The genetic diversity of Campylobacter jejuni isolates from farm animals and their environment was investigated by multilocus sequence typing (MLST). A total of 30 genotypes, defined by allelic profiles (assigned to sequence types [STs]), were found in 112 C. jejuni isolates originating in poultry, cattle, sheep, starlings, and slurry. All but two of these genotypes belonged to one of nine C. jejuni clonal complexes previously identified in isolates from human disease and retail food samples and one clonal complex previously associated with an environmental source. There was some evidence for the association of certain clonal complexes with particular farm animals: isolates belonging to the ST-45 complex predominated among poultry isolates but were absent among sheep isolates, while isolates belonging to the ST-61 and ST-42 complexes were predominant among sheep isolates but were absent from the poultry isolates. In contrast, ST-21 complex isolates were distributed among the different isolation sources. Comparison with MLST data from 91 human disease isolates showed small but significant genetic differentiation between the farm and human isolates; however, representatives of six clonal complexes were found in both samples. These data demonstrate that MLST and the clonal complex model can be used to identify and compare the genotypes of C. jejuni isolates from farm animals and the environment with those from retail food and human disease.


2009 ◽  
Vol 2009 ◽  
pp. 1-15 ◽  
Author(s):  
Akiko Kyuno ◽  
Mifue Shintaku ◽  
Yuko Fujita ◽  
Hiroto Matsumoto ◽  
Motoo Utsumi ◽  
...  

We sequenced the mitochondrial ND4 gene to elucidate the evolutionary processes ofBathymodiolusmussels and mytilid relatives. Mussels of the subfamily Bathymodiolinae from vents and seeps belonged to 3 groups and mytilid relatives from sunken wood and whale carcasses assumed the outgroup positions to bathymodioline mussels. Shallow water mytilid mussels were positioned more distantly relative to the vent/seep mussels, indicating an evolutionary transition from shallow to deep sea via sunken wood and whale carcasses.Bathymodiolus platifronsis distributed in the seeps and vents, which are approximately 1500 km away. There was no significant genetic differentiation between the populations. There existed high gene flow betweenB. septemdierumandB. breviorand low but not negligible gene flow betweenB. marisindicusandB. septemdierumorB. brevior, although their habitats are 5000–10 000 km away. These indicate a high adaptability to the abyssal environments and a high dispersal ability ofBathymodiolusmussels.


2022 ◽  
Vol 8 ◽  
Author(s):  
Tailisi H. Trevizani ◽  
Rosalinda C. Montone ◽  
Rubens C. L. Figueira

The polar regions are vulnerable to impacts caused by local and global pollution. The Antarctic continent has been considered an environment that has remained little affected by human activities. Direct exposure to contaminants may occur in areas continuously occupied by research stations for several decades. Admiralty Bay on the southeast coast of King George Island, has potential for being affected by human activities due research stations operating in the area, including the Brazilian Commandant Ferraz Antarctic Station (CFAS). The levels of metals and arsenic were determined in soils collected near CFAS (points 5, 6, 7, and 9), Base G and at two points distant from the CFAS: Refuge II and Hennequin. Samples were collected after the fire in CFAS occurred in February 2012, up to December 2018 to assess the environmental impacts in the area. Al and As were related with Base G. Refuge II and Hennequin can be considered as control points for this region. As a consequence of the accident, the increased levels for Cd, Cu, Pb, and Zn, especially at point 9 (inside the CFAS) and in the soil surrounding the CFAS in 2013. The results from 2016 to 2018 demonstrated a reduction in levels of all studied metals near CFAS, which may be related to the leaching of metals into Admiralty Bay; it is thus, being important the continue monitoring soil, sediments, and Antarctic biota.


2009 ◽  
Vol 44 (8) ◽  
pp. 891-895 ◽  
Author(s):  
Grzegorz Gryziak

This work aimed to investigate the ratio of colonization by terrestrial mites on ice-free areas created by the ongoing climate-induced melting of Antarctic glaciers. Glacier retreat opens new ice-free areas for the colonization by vegetation and animals. The study was undertaken on the Antarctic Specially Protected Area no. 128 (West Coast of the Admiralty Bay, King George Island, South Shetlands Islands). Transects marked between the Ecology, Baranowski and Windy Glaciers, and a sea shore were used to collect soil samples. Oribatid mites were found only on near-shore areas, on patches of vegetation of more than 30 years of age. The colonization by mite communities is strongly determined by the presence of plants.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yu Fang ◽  
Jie Chen ◽  
Honghua Ruan ◽  
Nan Xu ◽  
Ziting Que ◽  
...  

The earthworm species Metaphire vulgaris (a member of the Clitellata class) is widely distributed across China, and has important ecological functions and medicinal value. However, investigations into its genetic diversity and differentiation are scarce. Consequently, we evaluated the genetic diversity of five populations of M. vulgaris (GM, HD, NYYZ, QDDY, and QDY) in Yancheng, China via the mitochondrial COI gene and the novel microsatellites developed there. A total of nine haplotypes were obtained by sequencing the mitochondrial COI gene, among which NYYZ and QDDY populations had the greatest number of haplotypes (nh = 5). Further, the nucleotide diversity ranged from 0.00437 to 0.1243. The neighbor-joining trees and the TCS network of haplotypes indicated that earthworm populations within close geographical range were not genetically isolated at these small scale distances. Results of the identification of microsatellite molecular markers revealed that the allele number in 12 microsatellite loci ranged from 4 to 13. The observed heterozygosity ranged from 0.151 to 0.644, whereas the expected heterozygosity ranged from 0.213 to 0.847. The polymorphism data content of most sites was >0.5, which indicated that the designed sites had high polymorphism. Structural analysis results indicated that GM, HD, and NYYZ had similar genetic structures across the five populations. The Nei’s genetic distance between HD and NYYZ populations was the smallest (Ds = 0.0624), whereas that between HD and QDY populations was the largest (Ds = 0.2364). The UPGMA tree showed that HD were initially grouped with NYYZ, followed by GM, and then with QDDY. Furthermore, cross-species amplification tests were conducted for Metaphire guillelmi, which indicated that the presented markers were usable for this species. This study comprised a preliminary study on the genetic diversity of M. vulgaris, which provides basic data for future investigations into this species.


2020 ◽  
Vol 26 (2) ◽  
pp. 97
Author(s):  
Melta R. Fahmi ◽  
Eni Kusrini ◽  
Erma P. Hayuningtiyas ◽  
Shofihar Sinansari ◽  
Rudhy Gustiano

The wild betta fish is a potential ornamental fish export commodity normally caught by traders or hobbyists in the wild. However, the population of wild betta in nature has declined and become a threat for their sustainability. This research was conducted to analyze the genetic diversity, phylogenetic relationships, and molecular identification through DNA COI gene sequence of Indonesian wild betta fish. A total of 92 wild betta fish specimens were collected in this study. Amplification of COI genes was carried out using Fish F1, Fish R1, Fish F2, and Fish R2 primers. The genetic diversity and phylogenetic relationships were analyzed using MEGA version 5 software program. Species identification of the specimen was conducted using BLAST program with 98-100% similarity value of the DNA sequences to indicate the same species. Phylogenetic tree construction showed seven monophyletic clades and showed that Betta smaragdina was the ancestral species of genus Betta in Indonesian waters. Genetic distance among species ranged from 0.02 to 0.30, whereas intra-species genetic distance ranged from 0 to 6.54.


Sign in / Sign up

Export Citation Format

Share Document