high dispersal
Recently Published Documents


TOTAL DOCUMENTS

201
(FIVE YEARS 67)

H-INDEX

32
(FIVE YEARS 3)

2021 ◽  
Vol 56 (2) ◽  
pp. 151-156
Author(s):  
Carlos P. Muñoz-Ramírez ◽  
Maribel Beltrán-Concha ◽  
Karla Pérez-Araneda ◽  
Chester J. Sands ◽  
David K. A. Barnes ◽  
...  

Climate change is strongly influencing regions of Antarctica but the consequences on microevolutionary processes have been little studied. Patterns of population genetic diversity were analysed in the Antarctic bivalve Nuculana inaequisculpta (Protobranchia: Nuculanidae) from a fjord with 70 years of documented climate-forced glacier retreat. Thirty-nine individuals from five sites at different distances from the glacier terminus were collected, and the COI gene was sequenced from each individual. No statistically significant genetic differentiation was found between sites nor a significant correlation between the proximity of glaciers and genetic diversity, suggesting a high dispersal capability and therefore, a planktonic larval stage for this species. Nevertheless, we encourage increasing the sample size and number of loci in future studies to confirm our findings.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260344
Author(s):  
Marlis R. Douglas ◽  
Steven M. Mussmann ◽  
Tyler K. Chafin ◽  
Whitney J. B. Anthonysamy ◽  
Mark A. Davis ◽  
...  

Ecological restoration can promote biodiversity conservation in anthropogenically fragmented habitats, but effectiveness of these management efforts need to be statistically validated to determine ’success.’ One such approach is to gauge the extent of recolonization as a measure of landscape permeability and, in turn, population connectivity. In this context, we estimated dispersal and population connectivity in prairie vole (Microtus ochrogaster; N = 231) and meadow vole (M. pennsylvanicus; N = 83) within five tall-grass prairie restoration sites embedded within the agricultural matrix of midwestern North America. We predicted that vole dispersal would be constrained by the extent of agricultural land surrounding restored habitat patches, spatially isolating vole populations and resulting in significant genetic structure. We first employed genetic assignment tests based on 15 microsatellite DNA loci to validate field-derived species-designations, then tested reclassified samples with multivariate and Bayesian clustering to assay for spatial and temporal genetic structure. Population connectivity was further evaluated by calculating pairwise FST, then potential demographic effects explored by computing migration rates, effective population size (Ne), and average relatedness (r). Genetic species assignments reclassified 25% of initial field identifications (N = 11 M. ochrogaster; N = 67 M. pennsylvanicus). In M. ochrogaster population connectivity was high across the study area, reflected in little to no spatial or temporal genetic structure. In M. pennsylvanicus genetic structure was detected, but relatedness estimates identified it as kin-clustering instead, underscoring social behavior among populations rather than spatial isolation as the cause. Estimates of Ne and r were stable across years, reflecting high dispersal and demographic resilience. Combined, these metrics suggest the agricultural matrix is highly permeable for voles and does not impede dispersal. High connectivity observed confirms that the restored landscape is productive and permeable for specific management targets such as voles and also demonstrates population genetic assays as a tool to statistically evaluate effectiveness of conservation initiatives.


2021 ◽  
Vol 67 (6) ◽  
Author(s):  
Ancuta Fedorca ◽  
Elena Ciocirlan ◽  
Claudiu Pasca ◽  
Mihai Fedorca ◽  
Alexandru Gridan ◽  
...  

AbstractOnce exploited for fur, meat, and extracting the yellowish exudate called castoreum, the Eurasian beaver disappeared from Romania during the eighteenth century. After, the reintroductions carried out two decades ago are currently thriving in the Danube River basin. Using nine nSSR markers, we analysed samples from 98 individuals, and we found no genetic substructure, suggesting high dispersal and gene flow capabilities. The stepwise mutation model (SMM) indicated the existence of a recent genetic bottleneck, though the Eurasian beaver retains high levels of genetic diversity and population growth facilitated variation in nSSR loci. A fine-scale spatial correlation in females was detected, contrasting with males’ dispersal on longer distances. While the movement and establishment of individuals’ new territories were made under natural predation pressure, the mix following natural expansion improved the fitness and could contribute to a higher genetic diversity than the source population. With any reintroduction, a focus on capturing individuals from various geographic origins, as well as securing many and suitable founding individuals (adults, subadults, and juveniles) with mixed origins, could secure the post-genetic bottleneck recovery and higher genetic diversity. Beyond this conservation success, future management strategies should consider building a National Action Plan (NAP) for the species, including a permanent genetic monitoring programme for Eurasian beaver.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
D. M. Soper ◽  
A. K. E. Ekroth ◽  
M. J. F. Martins

Abstract Background The ‘genetic diversity’ hypothesis posits that polyandry evolved as a mechanism to increase genetic diversity within broods. One extension of this hypothesis is the ‘genetic diversity for disease resistance’ hypothesis (GDDRH). Originally designed for eusocial Hymenoptera, GDDRH states that polyandry will evolve as an effect of lower parasite prevalence in genetically variable broods. However, this hypothesis has been broadly applied to several other taxa. It is unclear how much empirical evidence supports GDDRH specifically, especially outside eusocial Hymenoptera. Results This question was addressed by conducting a literature review and posteriorly conducting meta-analyses on the data available using Hedges’s g. The literature review found 10 direct and 32 indirect studies with both having a strong publication bias towards Hymenoptera. Two meta-analyses were conducted and both found increased polyandry (direct tests; n = 8, g = 0.2283, p =  < 0.0001) and genetic diversity generated by other mechanisms (indirect tests; n = 10, g = 0.21, p =  < 0.0001) reduced parasite load. A subsequent moderator analysis revealed that there were no differences among Orders, indicating there may be applicability outside of Hymenoptera. However, due to publication bias and low sample size we must exercise caution with these results. Conclusion Despite the fact that the GDDRH was developed for Hymenoptera, it is frequently applied to other taxa. This study highlights the low amount of direct evidence supporting GDDRH, particularly outside of eusocial Hymenoptera. It calls for future research to address species that have high dispersal rates and contain mixes of solitary and communal nesting.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wilson Sebastian ◽  
Sandhya Sukumaran ◽  
S. Abdul Azeez ◽  
K. R. Muraleedharan ◽  
P. K. Dinesh Kumar ◽  
...  

AbstractThe adaptive genetic variation in response to heterogeneous habitats of the Indian Ocean was investigated in the Indian oil sardine using ddRAD sequencing to understand the subpopulation structure, stock complexity, mechanisms of resilience, and vulnerability in the face of climate change. Samples were collected from different ecoregions of the Indian ocean and ddRAD sequencing was carried out. Population genetic analyses revealed that samples from the Gulf of Oman significantly diverged from other Indian Ocean samples. SNP allele-environment correlation revealed the presence of candidate loci correlated with the environmental variables like annual sea surface temperature, chlorophyll-a, and dissolved oxygen concentration which might represent genomic regions allegedly diverging as a result of local adaptation. Larval dispersal modelling along the southwest coast of India indicated a high dispersal rate. The two major subpopulations (Gulf of Oman and Indian) need to be managed regionally to ensure the preservation of genetic diversity, which is crucial for climatic resilience.


2021 ◽  
Author(s):  
Jukka Suhonen ◽  
Lauri Paasivirta ◽  
Markus J. Rantala ◽  
Salmela Jukka ◽  
Erna Suutari

AbstractMetacommunity models describe species occupancy frequency distribution (hereinafter ‘SOFD’). Our goal is to present how the differences in eight macroinvertebrate orders dispersal ability affect SOFD patterns. A total of 293 species from eight macroinvertebrate orders were observed in 14 eutrophic lakes in southern Finland. Species occupancy ranged from 1 to 14. About 30% (89 out of 293) of the species were found in only one lake, yielding a surprisingly high number of rare species. So, there were few widely distributed common species and numerous rare species with a restricted distribution. Combined data from eight macroinvertebrate orders supported the bimodal truncated SOFD pattern. Similarly, the low dispersal ability orders, watermites and mayflies, fitted the bimodal truncated SOFD pattern. However, bimodal symmetric SOFD pattern also fitted relatively well to the dragonflies and damselflies with high dispersal ability. It seems that differences in dispersal ability among different macroinvertebrate orders may partly explain observed differences. Moreover, our results supported slightly more a niche-based model rather than a metapopulation dynamics model in eutrophic lakes littoral macroinvertebrate metacommunities. Our results highlight that the dispersal ability is important trait for species conservation in patchily distributed habitat.


2021 ◽  
Author(s):  
Rowan Durrant ◽  
Rodrigo Hamede ◽  
Konstans Wells ◽  
Miguel Lurgi

Metapopulation structure (i.e. the spatial arrangement of local populations and corridors between them) plays a fundamental role in the persistence of wildlife populations, but can also drive the spread of infectious diseases. While the disruption of metapopulation connectivity can reduce disease spread, it can also impair host resilience by disrupting gene flow and colonisation dynamics. Thus, a pressing challenge for many wildlife populations is to elucidate whether the benefits of disease management methods that reduce metapopulation connectivity outweigh the associated risks. Directly transmissible cancers are clonal malignant cell lines capable to spread through host populations without immune recognition, when susceptible and infected hosts become in close contact. Using an individual-based metapopulation model we investigate the effects of the interplay between host dispersal, disease transmission rate and inter-individual contact distance for transmission (determining within-population mixing) on the spread and persistence of a transmissible cancer, Tasmanian devil facial tumour disease (DFTD), from local to regional scales. Further, we explore population isolation scenarios to devise management strategies to mitigate disease spread. Disease spread, and the ensuing population declines, are synergistically determined by individuals' dispersal, disease transmission rate and within-population mixing. Low to intermediate transmission rates can be magnified by high dispersal and inter-individual transmission distance. Once disease transmission rate is high, dispersal and inter-individual contact distance do not impact the outcome of the disease transmission dynamics. Isolation of local populations effectively reduced metapopulation-level disease prevalence but caused severe declines in metapopulation size and genetic diversity. The relative position of managed (i.e. isolated) populations within the metapopulation had a significant effect on disease prevalence, highlighting the importance of considering metapopulation structure when implementing metapopulation-scale disease control measures. Our findings suggests that population isolation is not an ideal management method for preventing disease spread in species inhabiting already fragmented landscapes, where genetic diversity and extinction risk are already a concern, such as the Tasmanian devil.


Diversity ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 373
Author(s):  
Matthew L. Niemiller ◽  
Kurt Helf ◽  
Rickard S. Toomey

The Mammoth Cave System in the Interior Low Plateau karst region in central Kentucky, USA is a global hotspot of cave-limited biodiversity, particularly terrestrial species. We searched the literature, museum accessions, and database records to compile an updated list of troglobiotic and stygobiotic species for the Mammoth Cave System and compare our list with previously published checklists. Our list of cave-limited fauna totals 49 species, with 32 troglobionts and 17 stygobionts. Seven species are endemic to the Mammoth Cave System and other small caves in Mammoth Cave National Park. The Mammoth Cave System is the type locality for 33 cave-limited species. The exceptional diversity at Mammoth Cave is likely related to several factors, such as the high dispersal potential of cave fauna associated with expansive karst exposures, high surface productivity, and a long history of exploration and study. Nearly 80% of the cave-limited fauna is of conservation concern, many of which are at an elevated risk of extinction because of small ranges, few occurrences, and several potential threats.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Quiterie Haenel ◽  
Krista B. Oke ◽  
Telma G. Laurentino ◽  
Andrew P. Hendry ◽  
Daniel Berner

AbstractHow ecological divergence causes strong reproductive isolation between populations in close geographic contact remains poorly understood at the genomic level. We here study this question in a stickleback fish population pair adapted to contiguous, ecologically different lake and stream habitats. Clinal whole-genome sequence data reveal numerous genome regions (nearly) fixed for alternative alleles over a distance of just a few hundred meters. This strong polygenic adaptive divergence must constitute a genome-wide barrier to gene flow because a steep cline in allele frequencies is observed across the entire genome, and because the cline center closely matches the habitat transition. Simulations confirm that such strong divergence can be maintained by polygenic selection despite high dispersal and small per-locus selection coefficients. Finally, comparing samples from near the habitat transition before and after an unusual ecological perturbation demonstrates the fragility of the balance between gene flow and selection. Overall, our study highlights the efficacy of divergent selection in maintaining reproductive isolation without physical isolation, and the analytical power of studying speciation at a fine eco-geographic and genomic scale.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1632
Author(s):  
Gulshan Mahajan ◽  
Bhagirath S. Chauhan

Chloris virgata is a problematic weed in mungbean crops due to its high seed production, resistance to glyphosate and high dispersal ability. Pot and field experiments were conducted in 2020 and 2021 to evaluate a range of preemergent (PRE) herbicides for C. virgata control in mungbean. In the field and pot studies, isoxaflutole 75 g ai ha−1 caused crop injury, and in the field experiment, it reduced mungbean yield by 61% compared with the best treatment (pyroxasulfone 100 g ai ha−1). In the field and pot experiments, dimethenamid-P 720 g ai ha−1, pyroxasulfone 100 g ai ha−1 and S-metolachlor 1400 g ai ha−1 provided >88% control of C. virgata (for reduced biomass) and in the field experiment, these herbicides resulted in improved yield by 230%, 270% and 170%, respectively, compared with nontreated control (250 kg ha−1). Similarly, pendimethalin 1000 g ai ha−1 and trifluralin 600 g ai ha−1 provided >89% control (biomass) of C. virgata, and in the field experiment, these resulted in improved yields of 230% and 160%, respectively, compared with the nontreated control. PRE herbicides such as diuron 750 g ai ha−1, linuron 1100 g ai ha−1, metribuzin 360 g ha−1, terbuthylazine 750 g ai ha−1, imazapic 48 g ai ha−1 and imazethapyr 70 g ha−1 although did not cause crop injury; however, these herbicides did not control C. virgata. Flumioxazin 90 g ai ha−1 caused reduced biomass of C. virgata by 80% compared with the nontreated control, and in the field experiment, it resulted in improved yield by 140% compared with the nontreated control. This study suggests the potential use of herbicides, such as dimethenamid-P, pyroxasulfone and S-metolachlor in addition to pendimethalin and trifluralin, for C. virgata control in mungbean. Further studies are needed to determine the efficacy of dimethenamid-P, S-metolachlor and pyroxasulfone for controlling other troublesome weeds in mungbean.


Sign in / Sign up

Export Citation Format

Share Document