scholarly journals 37 Years later: revisiting a Red Sea long-term monitoring site

Coral Reefs ◽  
2015 ◽  
Vol 34 (4) ◽  
pp. 1111-1111 ◽  
Author(s):  
U. Cardini ◽  
N. van Hoytema ◽  
M. M. D. Al-Rshaidat ◽  
H. Schuhmacher ◽  
C. Wild ◽  
...  
2019 ◽  
Vol 12 (2) ◽  
pp. 921-934
Author(s):  
Nilton E. Rosário ◽  
Thamara Sauini ◽  
Theotonio Pauliquevis ◽  
Henrique M. J. Barbosa ◽  
Marcia A. Yamasoe ◽  
...  

Abstract. Extraterrestrial spectral response calibration of a multi-filter rotating shadow band radiometer (MFRSR) under pristine Amazonian Forest atmosphere conditions was performed using the Langley plot method. The MFRSR is installed in central Amazonia as part of a long-term monitoring site, which was used in the context of the GoAmazon2014/5 experiment. It has been operating continuously since 2011 without regular extraterrestrial calibration, preventing its application to accurate monitoring of aerosol particles. Once calibrated, the MFRSR measurements were applied to retrieve aerosol particle columnar optical properties, specifically aerosol optical depth (AODλ) and Ångström exponent (AE), which were evaluated against retrievals from a collocated Cimel Sun photometer belonging to the AErosol RObotic NETwork (AERONET). Results obtained revealed that pristine Amazonian conditions are able to provide MFRSR extraterrestrial spectral response with relative uncertainty lower than 1.0 % in visible channels. The worst estimate (air mass =1) for absolute uncertainty in AODλ retrieval varied from ≈0.02 to ≈0.03, depending on the assumption regarding uncertainty for MFRSR direct normal irradiance measured at the surface. The obtained root mean square error (RMSE ≈0.025) from the evaluation of MFRSR retrievals against AERONET AODλ was, in general, lower than estimated MFRSR AODλ uncertainty, and close to the uncertainty of AERONET field Sun photometers (≈0.02).


2019 ◽  
Vol 79 (4) ◽  
pp. 1831-1848
Author(s):  
M. J. Stumvoll ◽  
E. Canli ◽  
A. Engels ◽  
B. Thiebes ◽  
B. Groiss ◽  
...  

AbstractShallow landslide processes in geologically prone areas are recognised to pose threat to both human life and property. As precipitation is one of the main triggers for landslides, hydro-meteorological interrelationships and related future changes regarding frequency and magnitude of landslide processes in particular are of major interest. Long-term monitoring investigations of active landslide sites can provide a better understanding of the kinematic behaviour and triggering conditions of slope instabilities induced by hydro-meteorological patterns. In this study, we present the installation and first results of a long-term monitoring setup in the Flysch Zone of Lower Austria equipped with a large variety of combined hydrological and geotechnical measuring techniques. The geological unit of the Flysch Zone, characterised by high contents of clay and the corresponding weathering products, is exceptionally prone to earth and debris slides which are mostly triggered by heavy precipitation events or snow melting. The landslide under investigation is situated in the heterogeneous lithology of Flysch deposits, surrounded by private property and without any agricultural usage. There is evidence of landslide activity since the 1950s. As it is showing only moderate displacement velocities (max. 20 cm in 2009), it represents a predestined study site for a long-term monitoring and the testing of new monitoring techniques. One of the main aims of this study is to characterise the internal structure, assess the current landslide dynamics and to analyse recent process activity by means of surface and subsurface monitoring installations. Surface methods currently include terrestrial laser scanning, GNSS and total station measurements. With these, surface movement rates of approx. 12 cm/6 months have been detected in the most active part of the landslide. Inclinometer measurements together with results from core drillings and penetrations tests suggest a complex, rotational landslide system with different shear zones, consisting of a more active part in the upper 3 m underlain by a less active part down to 9-m depth. As this monitoring site is designed to be operated for at least 10 years, information about its structure and high-resolution, multi-temporal data about its dynamics can be correlated with hydrological cause variables in the future. These insights and the exemplary nature of the study site regarding shallow landslide processes in Flysch deposits will be useful for the development of novel analysis methods for both Lower Austria as well as study sites with similar initial conditions.


Author(s):  
Barbara S. Minsker ◽  
Charles Davis ◽  
David Dougherty ◽  
Gus Williams

Kerntechnik ◽  
2018 ◽  
Vol 83 (6) ◽  
pp. 513-522 ◽  
Author(s):  
U. Hampel ◽  
A. Kratzsch ◽  
R. Rachamin ◽  
M. Wagner ◽  
S. Schmidt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document