Reef-scale impacts of the stony coral tissue loss disease outbreak

Coral Reefs ◽  
2020 ◽  
Vol 39 (4) ◽  
pp. 861-866 ◽  
Author(s):  
Nuria Estrada-Saldívar ◽  
Ana Molina-Hernández ◽  
Esmeralda Pérez-Cervantes ◽  
Francisco Medellín-Maldonado ◽  
F. Javier González-Barrios ◽  
...  
2019 ◽  
Author(s):  
Julie L. Meyer ◽  
Jessy Castellanos-Gell ◽  
Greta S. Aeby ◽  
Claudia Häse ◽  
Blake Ushijima ◽  
...  

ABSTRACTAs many as 22 of the 45 coral species on the Florida Reef Tract are currently affected by stony coral tissue loss disease (SCTLD). The ongoing disease outbreak was first observed in 2014 in Southeast Florida near Miami and as of early 2019 has been documented from the northernmost reaches of the reef tract in Martin County down to Key West. We examined the microbiota associated with disease lesions and apparently healthy tissue on diseased colonies of Montastraea cavernosa, Orbicella faveolata, Diploria labyrinthiformis, and Dichocoenia stokesii. Analysis of differentially abundant taxa between disease lesions and apparently healthy tissue identified five unique amplicon sequence variants enriched in the diseased tissue in three of the coral species, namely an unclassified genus of Flavobacteriales and sequences identified as Fusibacter (Clostridiales), Planktotalea (Rhodobacterales), Algicola (Alteromonadales), and Vibrio (Vibrionales). In addition, several groups of likely opportunistic or saprophytic colonizers such as Epsilonbacteraeota, Patescibacteria, Clostridiales, Bacteroidetes, and Rhodobacterales were also enriched in SCTLD disease lesions. This work represents the first microbiological characterization of SCTLD, as an initial step toward identifying the potential pathogen(s) responsible for SCTLD.


Author(s):  
Lorenzo Alvarez-Filip ◽  
Nuria Estrada-Saldívar ◽  
Esmeralda Pérez-Cervantes ◽  
Ana Molina-Hernández ◽  
Francisco J. Gonzalez-Barrios

Caribbean reef corals have experienced unprecedented declines from climate change, anthropogenic stressors and infectious diseases in recent decades. Since 2014 a highly lethal, new disease, called stony coral tissue loss disease (SCTLD), has impacted many species in Florida. During the summer of 2018 we noticed an anomalously high disease prevalence affecting different coral species in the northern portion of the Mexican Caribbean. We assessed the severity of this outbreak in 2018/2019 using the AGRRA coral protocol to survey 82 reef sites across the Mexican Caribbean. Then, using a subset of 14 sites we detailed information from before the outbreak (2016/2017) to explore the consequences of the disease on the condition and composition of coral communities. Our findings show that the disease outbreak has already spread across the entire region, affecting similar species (with similar disease patterns) to those previously described for Florida. However, we observed a great variability in prevalence and tissue mortality that was not attributable to any geographical gradient. Using long-term data, we determined that there is no evidence of such high coral disease prevalence anywhere in the region before 2018, which suggests that the entire Mexican Caribbean (~450 km) was afflicted by the disease within a few months. The analysis of sites that contained pre-outbreak information showed that this event considerably increased coral mortality and severely changed the structure of coral communities in the region. Given the high prevalence and lethality of this disease, and the high number of susceptible species, we encourage reef researchers, managers and stakeholders across the Western Atlantic to accord it the highest priority for the near future.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8069 ◽  
Author(s):  
Lorenzo Alvarez-Filip ◽  
Nuria Estrada-Saldívar ◽  
Esmeralda Pérez-Cervantes ◽  
Ana Molina-Hernández ◽  
Francisco J. González-Barrios

Caribbean reef corals have experienced unprecedented declines from climate change, anthropogenic stressors and infectious diseases in recent decades. Since 2014, a highly lethal, new disease, called stony coral tissue loss disease, has impacted many reef-coral species in Florida. During the summer of 2018, we noticed an anomalously high disease prevalence affecting different coral species in the northern portion of the Mexican Caribbean. We assessed the severity of this outbreak in 2018/2019 using the AGRRA coral protocol to survey 82 reef sites across the Mexican Caribbean. Then, using a subset of 14 sites, we detailed information from before the outbreak (2016/2017) to explore the consequences of the disease on the condition and composition of coral communities. Our findings show that the disease outbreak has already spread across the entire region by affecting similar species (with similar disease patterns) to those previously described for Florida. However, we observed a great variability in prevalence and tissue mortality that was not attributable to any geographical gradient. Using long-term data, we determined that there is no evidence of such high coral disease prevalence anywhere in the region before 2018, which suggests that the entire Mexican Caribbean was afflicted by the disease within a few months. The analysis of sites that contained pre-outbreak information showed that this event considerably increased coral mortality and severely changed the structure of coral communities in the region. Given the high prevalence and lethality of this disease, and the high number of susceptible species, we encourage reef researchers, managers and stakeholders across the Western Atlantic to accord it the highest priority for the near future.


2019 ◽  
Vol 10 ◽  
Author(s):  
Julie L. Meyer ◽  
Jessy Castellanos-Gell ◽  
Greta S. Aeby ◽  
Claudia C. Häse ◽  
Blake Ushijima ◽  
...  

2019 ◽  
Author(s):  
Lorenzo Alvarez-Filip ◽  
Nuria Estrada-Saldívar ◽  
Esmeralda Pérez-Cervantes ◽  
Ana Molina-Hernández ◽  
Francisco J. Gonzalez-Barrios

Caribbean reef corals have experienced unprecedented declines from climate change, anthropogenic stressors and infectious diseases in recent decades. Since 2014 a highly lethal, new disease, called stony coral tissue loss disease (SCTLD), has impacted many species in Florida. During the summer of 2018 we noticed an anomalously high disease prevalence affecting different coral species in the northern portion of the Mexican Caribbean. We assessed the severity of this outbreak in 2018/2019 using the AGRRA coral protocol to survey 82 reef sites across the Mexican Caribbean. Then, using a subset of 14 sites we detailed information from before the outbreak (2016/2017) to explore the consequences of the disease on the condition and composition of coral communities. Our findings show that the disease outbreak has already spread across the entire region, affecting similar species (with similar disease patterns) to those previously described for Florida. However, we observed a great variability in prevalence and tissue mortality that was not attributable to any geographical gradient. Using long-term data, we determined that there is no evidence of such high coral disease prevalence anywhere in the region before 2018, which suggests that the entire Mexican Caribbean (~450 km) was afflicted by the disease within a few months. The analysis of sites that contained pre-outbreak information showed that this event considerably increased coral mortality and severely changed the structure of coral communities in the region. Given the high prevalence and lethality of this disease, and the high number of susceptible species, we encourage reef researchers, managers and stakeholders across the Western Atlantic to accord it the highest priority for the near future.


2021 ◽  
Vol 8 ◽  
Author(s):  
Rachele Spadafore ◽  
Ryan Fura ◽  
William F. Precht ◽  
Steven V. Vollmer

Environmental compliance monitoring associated with the Port Miami dredging project (2013–2015), designed to assess the impact of project-generated sediments on the local coral community, fortuitously captured a thermal bleaching event and the first reports of an emergent, highly contagious, white-plague-like coral disease outbreak in the fall of 2014. The disease, now termed stony coral tissue loss disease (SCTLD), has decimated reefs throughout Florida and is now spreading across the Caribbean. The high prevalence of disease, the number of affected species, and the high mortality of corals affected suggests SCTLD may be the most lethal coral disease ever recorded. Previous analyses of the dredge monitoring data have reached mixed conclusions about the relative impact of dredging on coral mortality and has often parsed out disease susceptible individuals to isolate the impacts of dredging only. We use multi-variate analyses, including time-based survival analyses, to examine the timing and impacts of dredging, coral bleaching, and disease on local coral mortality. By examining the status of corals monthly from the October 2013 to July 2015 observational period, we found that coral mortality was not significantly affected by a coral’s proximity to the dredge site or sediment burial. Instead, coral mortality was most strongly impacted by disease and the emergence of SCTLD during the monitoring period. During the 2-year monitoring period, 26.3% of the monitored corals died, but the only conditions significantly affected by the dredge were partial burial and partial mortality. The strongest link to mortality was due to disease, which impacted coral species differently depending on their susceptibility to SCTLD. The focus on disturbances associated with dredging created a circumstance where the greater impacts of this emergent disease were downplayed, leading to a false narrative of the resulting mortality on the local coral communities. The results of this study reveal that while local events such as a dredging project do have quantifiable effects and can be harmful to corals, regional and global threats that result in mass coral mortality such as thermal stress and disease represent an existential threat to coral reefs and must be urgently addressed.


2021 ◽  
Vol 8 ◽  
Author(s):  
Greta Aeby ◽  
Blake Ushijima ◽  
Erich Bartels ◽  
Cory Walter ◽  
Joseph Kuehl ◽  
...  

Stony coral tissue loss disease (SCTLD) is affecting corals across the Western Atlantic and displays species-specific and regional differences in prevalence, incidence, degree of mortality, and lesion morphology. We examined two Florida sites with different temporal histories of disease emergence; Fort Lauderdale where SCTLD is endemic and the Lower Florida Keys where SCTLD has recently emerged. Our objectives were to (1) assess the potential impact of SCTLD on overall reef condition by surveying reefs in each region, (2) in a single common species, Montastraea cavernosa, examine differences in SCTLD prevalence, colony mortality, and lesion morphology in each region, and (3) look for differences in contagion by conducting transmission experiments using lesions from each region. Reef surveys found sites in both regions had low coral cover, high algae cover, and similar coral species composition. SCTLD prevalence was higher in the Lower Keys than at Fort Lauderdale and two of the common species, M. cavernosa and S. siderea at Fort Lauderdale were dominated by smaller colonies (<5 cm) whereas larger colonies occurred in the Lower Keys. Tagged M. cavernosa SCTLD-affected colonies were followed for 2 years at one site in each region. In both years, Fort Lauderdale colonies showed declining disease prevalence, low colony mortality, and disease lesions were mainly bleached spots lacking tissue loss. In contrast, Lower Keys colonies tagged in the first year maintained 100% disease prevalence with high mortality, and disease lesions were predominantly tissue loss with no bleached edges. However, SCTLD dynamics changed, with year two tagged colonies showing declining disease prevalence, low mortality, and lesion morphology switched to a mixture of bleached polyps and tissue loss with or without bleached edges. Lesion morphology on colonies was a significant predictor of amount of tissue loss. Aquaria studies found the rate of SCTLD transmission using lesions from the different zones (emergent and endemic) were similar. Our study highlights that differences in coral mortality from SCTLD are not necessarily linked to host species, lesion morphology is reflective of subsequent rate of mortality, and disease dynamics change through time on reefs where the disease has newly emerged.


2020 ◽  
Vol 7 ◽  
Author(s):  
Jan H. Landsberg ◽  
Yasunari Kiryu ◽  
Esther C. Peters ◽  
Patrick W. Wilson ◽  
Noretta Perry ◽  
...  

Samples from eight species of corals (Colpophyllia natans, Dendrogyra cylindrus, Diploria labyrinthiformis, Meandrina meandrites, Montastraea cavernosa, Orbicella faveolata, Pseudodiploria strigosa, and Siderastrea siderea) that exhibited gross clinical signs of acute, subacute, or chronic tissue loss attributed to stony coral tissue loss disease (SCTLD) were collected from the Florida Reef Tract during 2016–2018 and examined histopathologically. The hallmark microscopic lesion seen in all eight species was focal to multifocal lytic necrosis (LN) originating in the gastrodermis of the basal body wall (BBW) and extending to the calicodermis, with more advanced lesions involving the surface body wall. This was accompanied by other degenerative changes in host cells such as mucocyte hypertrophy, degradation and fragmentation of gastrodermal architecture, and disintegration of the mesoglea. Zooxanthellae manifested various changes including necrosis (cytoplasmic hypereosinophilia, pyknosis); peripheral nuclear chromatin condensation; cytoplasmic vacuolation accompanied by deformation, swelling, or atrophy; swollen accumulation bodies; prominent pyrenoids; and degraded chloroplasts. Polyhedral intracytoplasmic eosinophilic periodic acid–Schiff-positive crystalline inclusion bodies (∼1–10 μm in length) were seen only in M. cavernosa and P. strigosa BBW gastrodermis in or adjacent to active lesions and some unaffected areas (without surface lesions) of diseased colonies. Coccoidlike or coccobacilloidlike structures (Gram-neutral) reminiscent of microorganisms were occasionally associated with LN lesions or seen in apparently healthy tissue of diseased colonies along with various parasites and other bacteria all considered likely secondary colonizers. Of the 82 samples showing gross lesions of SCTLD, 71 (87%) were confirmed histologically to have LN. Collectively, pathology indicates that SCTLD is the result of a disruption of host–symbiont physiology with lesions originating in the BBW leading to detachment and sloughing of tissues from the skeleton. Future investigations could focus on identifying the cause and pathogenesis of this process.


Sign in / Sign up

Export Citation Format

Share Document