Mid infrared band gap properties of 3-dimensional silicon inverse opal photonic crystal

2010 ◽  
Vol 99 (1) ◽  
pp. 117-123 ◽  
Author(s):  
Yu-Jie Li ◽  
Kai Xie ◽  
Jing Xu ◽  
Pan-Pan Du
2021 ◽  
Vol 9 ◽  
Author(s):  
Qi Han ◽  
Yadong Jiang ◽  
Jiayue Han ◽  
Xiang Dong ◽  
Jun Gou

Processing layer-dependent direct band gap and good absorption coefficient especially in the mid-infrared band, black phosphorous is believed to make a contribution superior to that of graphene in broadband photodetectors. The narrow band gap of 0.3 eV for bulk black phosphorous helps to absorb infrared radiation while a relatively large dark current under zero gate voltage is inevitable. Few layer black phosphorous sheets with asymmetrical thickness sealed in an insulator for protection is designed and explored for photosensitive mechanism in this work. Saturable absorption dominates the light harvesting process in visible light detection and thus limits maximum photocurrent to 3.3 and 1.4 μA for 520 and 650 nm lasers with a dark current of 0.7 μA. While in near-infrared wavelength, a responsivity of 0.12 A/W is inducted for 808 nm free of adsorption saturation even if the incident power is increased to 200 mW/cm2. Discrimination for the origin of the photo-response in short wavelength is conducted and the abnormal negative and nearly constant photocurrent in mid-infrared, irrelevant to inhomogeneous thickness, reveals the photothermal effect in a black phosphorous sheet. This work unravels various photoelectric features in black phosphorous and paves the way to designing more outstanding broadband photodetectors based on black phosphorous.


2018 ◽  
Vol 75 ◽  
pp. 373-378 ◽  
Author(s):  
Fang Wang ◽  
Yong Zhi Cheng ◽  
Xian Wang ◽  
Dong Qi ◽  
Hui Luo ◽  
...  

2005 ◽  
Vol 54 (1) ◽  
pp. 411
Author(s):  
Zhou Mei ◽  
Chen Xiao-Shuang ◽  
Xu Jing ◽  
Zeng Yong ◽  
Wu Yan-Rui ◽  
...  

Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 250
Author(s):  
Vakhtang Jandieri ◽  
Ramaz Khomeriki ◽  
Tornike Onoprishvili ◽  
Daniel Erni ◽  
Levan Chotorlishvili ◽  
...  

This review paper summarizes our previous findings regarding propagation characteristics of band-gap temporal solitons in photonic crystal waveguides with Kerr-type nonlinearity and a realization of functional and easily scalable all-optical NOT, AND and NAND logic gates. The proposed structure consists of a planar air-hole type photonic crystal in crystalline silicon as the nonlinear background material. A main advantage of proposing the gap-soliton as a signal carrier is that, by operating in the true time-domain, the temporal soliton maintains a stable pulse envelope during each logical operation. Hence, multiple concatenated all-optical logic gates can be easily realized paving the way to multiple-input ultrafast full-optical digital signal processing. In the suggested setup, due to the gap-soliton features, there is no need to amplify the output signal after each operation which can be directly used as a new input signal for another logical operation. The efficiency of the proposed logic gates as well as their scalability is validated using our original rigorous theoretical formalism confirmed by full-wave computational electromagnetics.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ali Rostamian ◽  
Ehsan Madadi-Kandjani ◽  
Hamed Dalir ◽  
Volker J. Sorger ◽  
Ray T. Chen

Abstract Thanks to the unique molecular fingerprints in the mid-infrared spectral region, absorption spectroscopy in this regime has attracted widespread attention in recent years. Contrary to commercially available infrared spectrometers, which are limited by being bulky and cost-intensive, laboratory-on-chip infrared spectrometers can offer sensor advancements including raw sensing performance in addition to use such as enhanced portability. Several platforms have been proposed in the past for on-chip ethanol detection. However, selective sensing with high sensitivity at room temperature has remained a challenge. Here, we experimentally demonstrate an on-chip ethyl alcohol sensor based on a holey photonic crystal waveguide on silicon on insulator-based photonics sensing platform offering an enhanced photoabsorption thus improving sensitivity. This is achieved by designing and engineering an optical slow-light mode with a high group-index of n g  = 73 and a strong localization of modal power in analyte, enabled by the photonic crystal waveguide structure. This approach includes a codesign paradigm that uniquely features an increased effective path length traversed by the guided wave through the to-be-sensed gas analyte. This PIC-based lab-on-chip sensor is exemplary, spectrally designed to operate at the center wavelength of 3.4 μm to match the peak absorbance for ethanol. However, the slow-light enhancement concept is universal offering to cover a wide design-window and spectral ranges towards sensing a plurality of gas species. Using the holey photonic crystal waveguide, we demonstrate the capability of achieving parts per billion levels of gas detection precision. High sensitivity combined with tailorable spectral range along with a compact form-factor enables a new class of portable photonic sensor platforms when combined with integrated with quantum cascade laser and detectors.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1485
Author(s):  
Wei Wang ◽  
Ruikang Zhao ◽  
Shilong Chang ◽  
Jing Li ◽  
Yan Shi ◽  
...  

In this paper, one spin-selected vortex metalens composed of silicon nanobricks is designed and numerically investigated at the mid-infrared band, which can produce vortex beams with different topological charges and achieve different spin lights simultaneously. Another type of spin-independent vortex metalens is also designed, which can focus the vortex beams with the same topological charge at the same position for different spin lights, respectively. Both of the two vortex metalenses can achieve high-efficiency focusing for different spin lights. In addition, the spin-to-orbital angular momentum conversion through the vortex metalens is also discussed in detail. Our work facilitates the establishment of high-efficiency spin-related integrated devices, which is significant for the development of vortex optics and spin optics.


Sign in / Sign up

Export Citation Format

Share Document