Local melting/solidification during peritectic solidification in a steep temperature gradient: analysis of a directionally solidified Al–25at%Ni

2014 ◽  
Vol 116 (4) ◽  
pp. 1821-1831 ◽  
Author(s):  
Dongmei Liu ◽  
Xinzhong Li ◽  
Yanqing Su ◽  
Markus Rettenmayr ◽  
Jingjie Guo ◽  
...  
2014 ◽  
Vol 1004-1005 ◽  
pp. 24-27
Author(s):  
Wen Jia Wang ◽  
Zhi Long Zhao ◽  
Ming Tang ◽  
Jian Jun Gao

An eutectic NiAl–1.5 at.% W alloy prepared by using directionally solidified (DS)was employed as a source for producing W-nanowires. Several growth rate of 8,15,25/s was respectively used at a temperature gradient of ~240 K/cm in a Bridgman-type directional solidification furnace. A combined stability diagram was applied to predict proper conditions for the selective dissolution of NiAl matrix to get W-wires. Etching in a mixture of HCl:H2O2released parallel aligned W-nanowires with a wire diameter of ~500 nm. Different morphologies, such as nanobelts, lotus-shaped, conical of W-nanowires are obtained at the different conditions.


1990 ◽  
Author(s):  
Yasuhiro KIZU ◽  
Keiichi KONDA ◽  
Masaki TAKEUCHI ◽  
Akio KITAGAWA ◽  
Masakuni SUZUKI

A brief review is given of observations of the resonance lines of He I and He II and their interpretation. As discussed in a previous paper, the helium lines are anomalously strong in the quiet Sun when compared with other transition region lines. The enhancement can be brought about by the transient excitation of the lines by electrons of higher temperature than that which determines the ion population. The variation in the intensity of the helium lines relative to those of other transition region lines appears to be related to variations in the temperature gradient between different parts of the atmosphere. To relate the degree of enhancement to other observable parameters, such as electron pressure and absolute line intensities, and thus to the structure of the atmosphere, a method for analysing the emission measure distribution previously developed in the context of the quiet atmosphere and active region loops is applied also to coronal holes. It is proposed that the non-thermal ion motions observed in the transition region can provide the required mechanism for transporting the helium ions across the steep temperature gradient. By making a simple model, an expression is developed which relates the helium enhancement to the non-thermal motions, the transition region temperature gradient and the electron pressure. The scaling laws implied can be tested against further observations when they become available.


Sign in / Sign up

Export Citation Format

Share Document