Morphological Characteristics of W-Nanowires after Selective Etching

2014 ◽  
Vol 1004-1005 ◽  
pp. 24-27
Author(s):  
Wen Jia Wang ◽  
Zhi Long Zhao ◽  
Ming Tang ◽  
Jian Jun Gao

An eutectic NiAl–1.5 at.% W alloy prepared by using directionally solidified (DS)was employed as a source for producing W-nanowires. Several growth rate of 8,15,25/s was respectively used at a temperature gradient of ~240 K/cm in a Bridgman-type directional solidification furnace. A combined stability diagram was applied to predict proper conditions for the selective dissolution of NiAl matrix to get W-wires. Etching in a mixture of HCl:H2O2released parallel aligned W-nanowires with a wire diameter of ~500 nm. Different morphologies, such as nanobelts, lotus-shaped, conical of W-nanowires are obtained at the different conditions.

2009 ◽  
Vol 16 (02) ◽  
pp. 191-201 ◽  
Author(s):  
E. ÇADIRLI ◽  
H. KAYA ◽  
M. GÜNDÜZ

Sn – Cd eutectic melt was first obtained in a hot filling furnace and then directionally solidified upward with different growth rate ranges (8.1–165 μm/s) at a constant temperature gradient G (4.35 K/mm) in the Bridgman-type directional solidification furnace. The lamellar spacings (λ) were measured from both transverse and longitudinal sections of the samples. The influence of the growth rate (V) on lamellar spacings (λ) and undercoolings (Δ T) was analyzed. λ2V, ΔTλ and ΔTV-0.5 values were determined by using λ,ΔT and V values. Microindentation hardness (HV) was measured from both transverse and longitudinal sections of the specimens. HV values increase with the increasing values of V but decrease with increasing λ values. λ-V, λ - ΔT and λ2V results have been compared with the Jackson–Hunt eutectic model and similar experimental results, HV - V and HV - λ results were also compared with the previous work.


2012 ◽  
Vol 562-564 ◽  
pp. 477-481
Author(s):  
Rui Xu

The directional solidification of the ternary Al alloy with composition of 2.6 at%Ni, 0.9 at%Y and 96.5 at% Al was carried out under the temperature gradient of 5 K/mm and the droping velocities of 0.5 mm/min, 1 mm/min, 5 mm/min, 10 mm/min, and 25 mm/min. The microstructure of the Al-Ni-Y ternary alloy was also analyzed by X-ray diffraction and optical microscope. The experimental results show that the microstructures of the Al-Ni-Y ternary alloy are consisted of ª-Al2, Al3Ni and Y4Ni6Al23phase when the alloy was directionally solidified in all directionally solidified rates in the experiments. No primary -Al can be found in the sample with directionally solidified rate of 0.5 mm/min. When the rates higher than 1 mm/min, the primary ª-Al can be observed. The microstructure of the directionally solidified alloy becomes finer and the primary ª-Al is smaller gradually with the increasing of growth velocities when the dropping rate of directional solidification is higher than 5 min/min. Two eutectic structures, Y4Ni6Al23andª-Al eutectic and Al3Ni and ª-Al eutectic, can be found when the dropping rate is higher than 10 mm/min.


2011 ◽  
Vol 287-290 ◽  
pp. 21-25
Author(s):  
Hua Ping Xu ◽  
Gao Feng Song ◽  
Xie Min Mao

In this paper, single crystal of CuAlNiBe quaternary shape memory alloy was prepared in a high temperature gradient directional solidification furnace with a selective growing crystallizer. And its shape memory performance characters were systematically compared with other series copper base shape memory alloys. The results show that the single crystal of CuAlNiBe quaternary shape memory alloy has better shape memory properties.


1990 ◽  
Vol 5 (9) ◽  
pp. 1834-1849 ◽  
Author(s):  
M. J. Cima ◽  
X. P. Jiang ◽  
H. M. Chow ◽  
J. S. Haggerty ◽  
M. C. Flemings ◽  
...  

Laser-heated float zone growth was used to study the directional solidification behavior of Bi–Sr–Ca–Cu–O superconductors. The phases that solidify from the melt, their morphology, and their composition are altered by growth rate. Highly textured microstructures are achieved by directional solidification at all growth rates. The superconducting phase is found always to have the composition Bi2.5Sr2CaCu2.2Oy when grown from boules with composition 2:2:1:2 (BiO1.5:SrO:CaO:CuO). Planar growth fronts of Bi2.5Sr2CaCu2.2Oy are observed when the temperature gradient divided by the growth rate (G/R) is larger than 3 ⊠ 1011 K-s/m2 in 2.75 atm oxygen. Thus, the 2212 compound was observed to solidify directly from the melt at the slowest growth rates used in this study. Measurement of the steady-state liquid zone composition indicates that it becomes bismuth-rich as the growth rate decreases. Dendrites of the primary solidification phase, (Sr1−xCax)14Cu24Oy, form in a matrix of Bi2.5Sr2CaCu2.2Oy when G/R is somewhat less than 3 ⊠ 1011 K-s/m2. Observed microstructures are consistent with a peritectic relationship among Bi2.5Sr2CaCu2.2Oy, (Sr1−xCax)14Cu24Oy (x = 0.4), and a liquid rich in bismuth at elevated oxygen pressure. At lower values of G/R, Sr3Ca2Cu5Oy is the primary solidification phase and negligible Bi2.5Sr2CaCu2.2Oy forms in the matrix.


2011 ◽  
Vol 275 ◽  
pp. 192-195
Author(s):  
Bok Hyun Kang ◽  
Woo Hyun Lee ◽  
Ki Young Kim ◽  
Hoon Cho ◽  
Jae Soo Noh

Cu-2wt.Ag-2wt.%Zr alloy was directionally solidified with different growth rates(V=10-200 um/s) at a constant temperature gradient(G=3.1 K/mm) in a modified Bridgman furnace. The influence of growth rate was investigated by observing the microstructure and measuring the solutes’ compositions within the Cu-matrix and dendrite boundaries. The experimental results show that increasing the growth rate, decreased both the primary and secondary arm spacing and increased micro-Vickers hardness. The solutes’ concentration also increased as a result of the back diffusion caused by a decreasing growth rate. The electrical conductivity depends on the solutes’ distribution.


2015 ◽  
Vol 719-720 ◽  
pp. 102-105 ◽  
Author(s):  
Laércio G. Gomes ◽  
Daniel J. Moutinho ◽  
Ivaldo L. Ferreira ◽  
Otávio L. Rocha ◽  
Amauri Garcia

Experiments of vertical unsteady-state directional solidification were carried out in order to permit the influence of copper alloying to Al-Si alloys on the scale of secondary dendritic arm (λ2) to be investigated. The microstructures of Al-nSi-3wt%Cu alloys, with “n” equal to 5.5wt%Si and 9.0wt%Si, were characterized and correlated with solidification thermal parameters: the growth rate (VL), the tip cooling rate (Ṫ) and the local solidification time (tSL). A comparative analysis between the present results and those from the literature related to the secondary dendrite growth during directional solidification of Al-nSi alloys is also conducted. It is shown that the addition of Cu to both Al-nSi alloys decreases λ2, and experimental growth laws relating λ2 to VL and ṪL are proposed for the ternary alloys examined. The experimental scatter of λ2 is also compared with the only theoretical dendritic growth model from the literature for multicomponent alloys, and it is shown that the theoretical predictions overestimate the present experimental results.


Sign in / Sign up

Export Citation Format

Share Document