scholarly journals Electrophysical properties of the multiferroic PFN–ferrite composites obtained by spark plasma sintering and classical technology

2020 ◽  
Vol 126 (11) ◽  
Author(s):  
Przemysław Niemiec ◽  
Joanna A. Bartkowska ◽  
Dagmara Brzezińska ◽  
Grzegorz Dercz ◽  
Zbigniew Stokłosa

AbstractThe multiferroic (ferroelectric–ferromagnetic) composites (PFN–ferrite) based on ferroelectromagnetic PbFe1/2Nb1/2O3 powder and ferrite powder (zinc–nickel ferrite, NiZnFeO4) were obtained in the presented study. The ceramic PFN–ferrite composites consisted of 90% powder PFN material and 10% powder NiZnFeO4 ferrite. The ceramic powders were synthesized by the classical technological method using powder calcination, while densification of the composite powders (sintering) was carried by two different methods: (1) free sintering method (FS) and (2) spark plasma sintering (SPS). The composite PFN–ferrite samples were thermally tested, including DC electrical conductivity and dielectric properties. Besides, XRD, SEM, EDS (energy-dispersive spectrometry) and ferroelectric properties (hysteresis loop) of the composite samples were tested at room temperature. At the work, a comparison was made for the results measured for PFN–ferrite composite samples obtained by two methods. The X-ray examination of multiferroic ceramic composites confirmed the occurrence of the strong diffraction peaks derived from ferroelectric (PFN) matrix of composite as well as weak peaks induced by the ferrite component. At the same time, the studies showed the absence of other undesired phases. The results presented in this work revealed that the ceramic composite obtained by two different technological sintering methods (free sintering method and spark plasma sintering technique) can be the promising materials for functional applications, for example, in sensors for magnetic and electric fields.

2012 ◽  
Vol 729 ◽  
pp. 31-36 ◽  
Author(s):  
Csaba Balázsi ◽  
Orsolya Tapasztó ◽  
Zoltán Károly ◽  
Peter Kun ◽  
Katalin Balázsi ◽  
...  

Multiwall carbon nanotubes were dispersed with a concentration of 3wt% in silicon nitride ceramic host. A high efficiency attritor mill has been used for an effective dispersion of the filler phase in the matrix. In this work we have developed a spark plasma sintering process (SPS) suitable to consolidate and tailor the microstructure of CNT-reinforced silicon nitride-based ceramic composites. Mechanical measurements, micro-indentation investigations of the hardness and fracture toughness have been performed. Scanning electron microscopy has been involved in order to reveal the microstructure of the resulting composites.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 393
Author(s):  
Alexander M. Laptev ◽  
Jürgen Hennicke ◽  
Robert Ihl

Spark Plasma Sintering (SPS) is a technology used for fast consolidation of metallic, ceramic, and composite powders. The upscaling of this technology requires a reduction in energy consumption and homogenization of temperature in compacts. The application of Carbon Fiber-Reinforced Carbon (CFRC) insulating plates between the sintering setup and the electrodes is frequently considered as a measure to attain these goals. However, the efficiency of such a practice remains largely unexplored so far. In the present paper, the impact of CFRC plates on required power, total sintering energy, and temperature distribution was investigated by experiments and by Finite Element Modeling (FEM). The study was performed at a temperature of 1000 °C with a graphite dummy mimicking an SPS setup. A rather moderate influence of CFRC plates on power and energy demand was found. Furthermore, the cooling stage becomes considerably longer. However, the application of CFRC plates leads to a significant reduction in the axial temperature gradient. The comparative analysis of experimental and modeling results showed the good capability of the FEM method for prediction of temperature distribution and required electric current. However, a discrepancy between measured and calculated voltage and power was found. This issue must be further investigated, considering the influence of AC harmonics in the DC field.


2016 ◽  
Vol 28 (4) ◽  
pp. 3746-3751 ◽  
Author(s):  
Yang Liu ◽  
Guowang Xu ◽  
Hui Lv ◽  
Chuyun Huang ◽  
Yiwan Chen ◽  
...  

2013 ◽  
Vol 39 (6) ◽  
pp. 6637-6646 ◽  
Author(s):  
Govindaraajan B. Yadhukulakrishnan ◽  
Sriharsha Karumuri ◽  
Arif Rahman ◽  
Raman P. Singh ◽  
A. Kaan Kalkan ◽  
...  

2021 ◽  
Vol 405 ◽  
pp. 126511
Author(s):  
Weisheng Liu ◽  
Xuanru Ren ◽  
Hongao Chu ◽  
Menglin Zhang ◽  
Qingqing Yang ◽  
...  

Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1323 ◽  
Author(s):  
Yanlin Pan ◽  
Daoping Xiang ◽  
Ning Wang ◽  
Hui Li ◽  
Zhishuai Fan

Fine-grained W-6Ni-4Mn alloys were fabricated by spark plasma sintering (SPS) using mechanical milling W, Ni and Mn composite powders. The relative density of W-6Ni-4Mn alloy increases from 71.56% to 99.60% when it is sintered at a low temperature range of 1000–1200 °C for 3 min. The spark plasma sintering process of the alloy can be divided into three stages, which clarify the densification process of powder compacts. As the sintering temperature increases, the average W grain size increases but remains at less than 7 µm and the distribution of the binding phase is uniform. Transmission electron microscopy (TEM) observation reveals that the W-6Ni-4Mn alloy consists of the tungsten phase and the γ-(Ni, Mn, W) binding phase. As the sintering temperature increases, the Rockwell hardness and bending strength of alloys initially increases and then decreases. The optimum comprehensive hardness and bending strength of the alloy are obtained at 1150 °C. The main fracture mode of the alloys is W/W interface fracture.


Sign in / Sign up

Export Citation Format

Share Document