scholarly journals The effect of CoFe2O4, CuFe2O4 and Cu/CoFe2O4 nanoparticles on the optical properties and piezoelectric response of the PVDF polymer

2022 ◽  
Vol 128 (2) ◽  
Author(s):  
Mai M. El-Masry ◽  
Rania Ramadan
2019 ◽  
Author(s):  
Seema Josh ◽  
Manoj Kumar ◽  
Himanshu Pandey ◽  
Sandeep Chhoker

2021 ◽  
Author(s):  
Mai EL-Masry ◽  
Rania Ramadan

Abstract Cobalt ferrite, Copper ferrite and cobalt doped copper ferrite nanoparticles have been synthesized and characterized using different characterization methods (XRD, FTIR and FESEM). The prepared nanoparticles have been used as promising fillers of the polyvinylidene fluoride (PVDF) polymer. The PVDF/(Cu-CoFe2O4, CoFe2O4, and CuFe2O4) nanocomposites films have been prepared via a simple solution casting technique. The optical properties and the piezoelectric response of the prepared nanocomposite films have been studied. The study showed that Cu-CoFe2O4, CoFe2O4, and CuFe2O4 have enhanced the interfacial polarization density and dielectric constant. The optical conductivity value of PVDF/ (Cu-CoFe2O4 and CoFe2O4) increased five times compared with the pure PVDF. Also, an increase in the piezoelectric response has been recorded by adding the nano-fillers to the pure PVDF.


2022 ◽  
Author(s):  
Mai EL-Masry ◽  
Rania Ramadan

Abstract Polyvinylidene fluoride (PVDF) polymer is considered as a promising piezoelectric material whose optical properties need to be improved. Zinc ferrite is an excellent photoelectric material, in the present work it was doped separately by both cobalt and copper. Co-ZnFe2O4 and Cu-ZnFe2O4 nanoparticles were synthesized and characterized to be used as PVDF fillers, aiming to improve its optical properties. The optical properties as well as, the piezoelectric response of the prepared PVDF/ (Co-ZnFe2O4 and Cu-ZnFe2O4) nanocomposites were investigated. A remarkable improvement in the PVDF relative permittivity, optical conductivity, refractive index, non-linear susceptibility, and a great reduction in the band gap energy value is obtained by adding Co-ZnFe2O4 nanoparticles to it. However, Cu-ZnFe2O4 nanoparticles have limited improvement of the PVDF optical properties compared to the Co-ZnFe2O4 nanoparticles. The piezoelectric response of the PVDF polymer is clearly increased by the addition of both Co-ZnFe2O4 and Cu-ZnFe2O4 nanoparticles.


Author(s):  
K. Tsuno ◽  
T. Honda ◽  
Y. Harada ◽  
M. Naruse

Developement of computer technology provides much improvements on electron microscopy, such as simulation of images, reconstruction of images and automatic controll of microscopes (auto-focussing and auto-correction of astigmatism) and design of electron microscope lenses by using a finite element method (FEM). In this investigation, procedures for simulating the optical properties of objective lenses of HREM and the characteristics of the new lens for HREM at 200 kV are described.The process for designing the objective lens is divided into three stages. Stage 1 is the process for estimating the optical properties of the lens. Firstly, calculation by FEM is made for simulating the axial magnetic field distributions Bzc of the lens. Secondly, electron ray trajectory is numerically calculated by using Bzc. And lastly, using Bzc and ray trajectory, spherical and chromatic aberration coefficients Cs and Cc are numerically calculated. Above calculations are repeated by changing the shape of lens until! to find an optimum aberration coefficients.


Author(s):  
A. Strojnik ◽  
J.W. Scholl ◽  
V. Bevc

The electron accelerator, as inserted between the electron source (injector) and the imaging column of the HVEM, is usually a strong lens and should be optimized in order to ensure high brightness over a wide range of accelerating voltages and illuminating conditions. This is especially true in the case of the STEM where the brightness directly determines the highest resolution attainable. In the past, the optical behavior of accelerators was usually determined for a particular configuration. During the development of the accelerator for the Arizona 1 MEV STEM, systematic investigation was made of the major optical properties for a variety of electrode configurations, number of stages N, accelerating voltages, 1 and 10 MEV, and a range of injection voltages ϕ0 = 1, 3, 10, 30, 100, 300 kV).


Sign in / Sign up

Export Citation Format

Share Document