scholarly journals Study of PVDF/ (Co-ZnFe2O4 and Cu-ZnFe2O4) nanocomposite for the piezo-phototronics applications

Author(s):  
Mai EL-Masry ◽  
Rania Ramadan

Abstract Polyvinylidene fluoride (PVDF) polymer is considered as a promising piezoelectric material whose optical properties need to be improved. Zinc ferrite is an excellent photoelectric material, in the present work it was doped separately by both cobalt and copper. Co-ZnFe2O4 and Cu-ZnFe2O4 nanoparticles were synthesized and characterized to be used as PVDF fillers, aiming to improve its optical properties. The optical properties as well as, the piezoelectric response of the prepared PVDF/ (Co-ZnFe2O4 and Cu-ZnFe2O4) nanocomposites were investigated. A remarkable improvement in the PVDF relative permittivity, optical conductivity, refractive index, non-linear susceptibility, and a great reduction in the band gap energy value is obtained by adding Co-ZnFe2O4 nanoparticles to it. However, Cu-ZnFe2O4 nanoparticles have limited improvement of the PVDF optical properties compared to the Co-ZnFe2O4 nanoparticles. The piezoelectric response of the PVDF polymer is clearly increased by the addition of both Co-ZnFe2O4 and Cu-ZnFe2O4 nanoparticles.

2020 ◽  
Vol 92 (2) ◽  
pp. 20402
Author(s):  
Kaoutar Benthami ◽  
Mai ME. Barakat ◽  
Samir A. Nouh

Nanocomposite (NCP) films of polycarbonate-polybutylene terephthalate (PC-PBT) blend as a host material to Cr2O3 and CdS nanoparticles (NPs) were fabricated by both thermolysis and casting techniques. Samples from the PC-PBT/Cr2O3 and PC-PBT/CdS NCPs were irradiated using different doses (20–110 kGy) of γ radiation. The induced modifications in the optical properties of the γ irradiated NCPs have been studied as a function of γ dose using UV Vis spectroscopy and CIE color difference method. Optical dielectric loss and Tauc's model were used to estimate the optical band gaps of the NCP films and to identify the types of electronic transition. The value of optical band gap energy of PC-PBT/Cr2O3 NCP was reduced from 3.23 to 3.06 upon γ irradiation up to 110 kGy, while it decreased from 4.26 to 4.14 eV for PC-PBT/CdS NCP, indicating the growth of disordered phase in both NCPs. This was accompanied by a rise in the refractive index for both the PC-PBT/Cr2O3 and PC-PBT/CdS NCP films, leading to an enhancement in their isotropic nature. The Cr2O3 NPs were found to be more effective in changing the band gap energy and refractive index due to the presence of excess oxygen atoms that help with the oxygen atoms of the carbonyl group in increasing the chance of covalent bonds formation between the NPs and the PC-PBT blend. Moreover, the color intensity, ΔE has been computed; results show that both the two synthesized NCPs have a response to color alteration by γ irradiation, but the PC-PBT/Cr2O3 has a more response since the values of ΔE achieved a significant color difference >5 which is an acceptable match in commercial reproduction on printing presses. According to the resulting enhancement in the optical characteristics of the developed NCPs, they can be a suitable candidate as activate materials in optoelectronic devices, or shielding sheets for solar cells.


2012 ◽  
Vol 616-618 ◽  
pp. 1773-1777
Author(s):  
Xi Lian Sun ◽  
Hong Tao Cao

In depositing nitrogen doped tungsten oxide thin films by using reactive dc pulsed magnetron sputtering process, nitrous oxide gas (N2O) was employed instead of nitrogen (N2) as the nitrogen dopant source. The nitrogen doping effect on the structural and optical properties of WO3 thin films was investigated by X-ray diffraction, transmission electron microscopy and UV-Vis spectroscopy. The thickness, refractive index and optical band gap energy of these films have been determined by analyzing the SE spectra using parameterized dispersion model. Morphological images reveal that the films are characterized by a hybrid structure comprising nanoparticles embeded in amorphous matrix and open channels between the agglomerated nanoparticles. Increasing nitrogen doping concentration is found to decrease the optical band gap energy and the refractive index. The reduced band gaps are associated with the N 2p orbital in the N-doped tungsten oxide films.


1991 ◽  
Vol 243 ◽  
Author(s):  
Chien H. Peng ◽  
Jhing-Fang Chang ◽  
Seshu B. Desu

AbstractOptical properties were investigated for undoped, La-doped, and Nd-doped Pb(ZrxTi1-x)O3 thin films deposited on sapphire substrates by metalorganic decomposition (MOD) process. Refractive index and extinction coefficient of these films were calculated from transmission spectra in the wavelength range of 300 to 2000 nm. The packing densities of these films were calculated from the refractive index data by using the effective medium approximation. Band gap energies of these films were also reported under the assumption of direct band-to-band transition. The refractive index and band gap energy of PZT films showed a linear dependence on Zr/Ti ratio. The refractive index decreased, while the band gap energy increased with increasing zirconium content. It was also found that both La-doped and Nd-doped PZT films had higher refractive indices than those of undoped PZT films with the same Zr/Ti ratio (50/50).


2016 ◽  
Vol 864 ◽  
pp. 37-41 ◽  
Author(s):  
Mukhayyarotin Niswati Rodliyatul Jauhariyah ◽  
Cari ◽  
Ahmad Marzuki

This paper presents the optical properties of erbium doped tellurite glasses with the composition of 55TeO2-2Bi2O3-35ZnO-5PbO-(3-x)Na2O-xEr2O3 where x = 0, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 mol% . Refractive index of the glasses was measured using Brewster’s angle method and their optical absorption spectra were measured in spectral range 200 – 1100 nm recorded at room temperature. The results show that the glass refractive index increases with the increase of Er3+ ion content in the glass and the optical band gap energy decreases with the increase of erbium content in the glass.


Author(s):  
Atefeh Nazari Setayesh ◽  
Hassan Sedghi

Background: In this work, CdS thin films were synthesized by sol-gel method (spin coating technique) on glass substrates to investigate the optical behavior of the film. Methods: Different substrate spin coating speeds of 2400, 3000, 3600 rpm and different Ni dopant concentrations of 0 wt.%, 2.5 wt.%, 5 wt.%) were investigated. The optical properties of thin films such as refraction index, extinction coefficient, dielectric constant and optical band gap energy of the layers were discussed using spectroscopic ellipsometry method in the wavelength range of 300 to 900 nm. Results: It can be deduced that substrate rotation speed and dopant concentration has influenced the optical properties of thin films. By decreasing rotation speed of the substrate which results in films with more thicknesses, more optical interferences were appeared in the results. Conclusion: The samples doped with Ni comparing to pure ones have had more optical band gap energy.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 882
Author(s):  
Yuechan Li ◽  
Yongli Li ◽  
An Xie

Doping impurity into ZnO is an effective and powerful technique to tailor structures and enhance its optical properties. In this work, Zn1−xMgxO and Zn1−x−yMgxByO nanoparticles (x = 0, 0.1, 0.2, 0.3, 0.4; y = 0, 0.02, 0.04) were synthesized via one-pot method. It shows that the Mg and B dopants has great influence on crystallinity and surface morphology of ZnO nanoparticles, without changing the wurtzite structure of ZnO. The band structure study indicates that the competition of Conductive Band (CB) shift, Burstein–Moss (B-M) shift and Shrinkage effect will cause the band gap energy change in ZnO.


2021 ◽  
Vol 317 ◽  
pp. 95-99
Author(s):  
Muhammad Noorazlan Abd Azis ◽  
Halimah Mohamed Kamari ◽  
Suriani Abu Bakar ◽  
Azlina Yahya ◽  
Umar Saad Aliyu

Borotellurite glass had been widely applied in the field of optical communications and devices. In this work, holmium oxides doped borotellurite glass had been successfully fabricated via conventional melt-quenched technique. The structural properties of holmium doped tellurite glass were found using x-ray diffraction (XRD) method. The nonexistence of sharp peaks in XRD pattern shows that the inclusion of holmium tellurite glass leads to the formation long range of disorderness. The optical properties of the glass system such as refractive index and optical band gap energy are investigated using UV-Vis spectrophotometer. The value of refractive index is found in nonlinear trend along with holmium oxides concentration. It is found that the refractive index is more than 2 at 0.01, 0.03 and 0.04 of holmium concentrations. The optical band gap energy was found in similar trend with refractive index which is in nonlinear pattern.


2013 ◽  
Vol 37 (1) ◽  
pp. 83-91 ◽  
Author(s):  
Chitra Das ◽  
Jahanara Begum ◽  
Tahmina Begum ◽  
Shamima Choudhury

Effect of thickness on the optical and electrical properties of gallium arsenide (GaAs) thin films were studied. The films of different thicknesses were prepared by vacuum evaporation method (~10-4 Pa) on glass substrates at a substrate temperature of 323 K. The film thickness was measured in situ by a frequency shift of quartz crystal. The thicknesses were 250, 300 and 500 nm. Absorption spectrum of this thin film had been recorded using UV-VIS-NIR spectrophotometer in the photon wavelength range of 300 - 2500 nm. The values of some important optical parameters of the studied films (absorption coefficient, optical band gap energy and refractive index; extinction co-efficient and real and imaginary parts of dielectric constant) were determined using these spectra. Transmittance peak was observed in the visible region of the solar spectrum. Here transmittance showed better result when thicknesses were being increased. The optical band gap energy was decreased by the increase of thickness. The refractive index increased by increasing thickness while extinction co-efficient and real and imaginary part of dielectric constant decreased. DOI: http://dx.doi.org/10.3329/jbas.v37i1.15684 Journal of Bangladesh Academy of Sciences, Vol. 37, No. 1, 83-91, 2013


2016 ◽  
Vol 64 (2) ◽  
pp. 157-161
Author(s):  
M Alauddin ◽  
MM Islam ◽  
MA Aziz

The structural, spectroscopic (IR, NMR and UV-Vis), electronic and optical properties of monohydrated adenine (monohydrated 6-aminopurine, C5H5N5.H2O) are investigated theoretically using DFT/B3LYP level of theory. Three minimum energy structures have been identified for monohydrated of adenine where H2O molecule is doubly hydrogen bonded with adenine.1H NMR analysis shows that the protons which are hydrogen bonded become deshielded and chemical shift moves to the higher frequency region.Five IR active mode of vibrations were found at 3108, 3295, 3665, 3676 and 3719 cm-1 which are assigned as bonded -OH vibration of H2O, Bonded -NH vibration of NH2, Free -NH vibration of adenine (9 N), Free -NH vibration of NH2, Free -OH vibration of H2O, respectively and agree well with the available experimental results. The investigation of electronic properties shows that the HOMO-LUMO band gap energy of monohydrated adenine at B3LYP level is 5.15 eV. The major electronic transition (from HOMO to LUMO (83%) (π→π*)) occurs at 258 nm (4.80 eV) with a minor transition at 237 nm (5.23 eV). Theoretically it is observed that the HOMO-LUMO band gap energy is for monohydrated adenine is lower than that of adenine. Dhaka Univ. J. Sci. 64(2): 157-161, 2016 (July)


2020 ◽  
Author(s):  
Juliya Acha Parambil ◽  
Abdul Mujeeb V.M ◽  
S. Zh. Karazhanov ◽  
Jayaram Peediyekkal

Abstract The photocatalytic degradation of methylene blue in aqueous solutions is enhanced significantly by formulating multiphase TiO2/ZnO/Fe2O3 nanocomposites. The photocatalytic activity of unary TiO2, binary TiO2/ZnO, and ternary TiO2/ZnO/Fe2O3 compounds are compared and reported. Using TiO2/ZnO/Fe2O3, methylene blue degradation became rapid and the reaction followed first-order kinetics. The consequences of the phase transition, surface features, and optical properties are compared and elucidated. The reduced photoluminescence intensity and decreased optical band gap energy in tertiary compounds impose higher degradation of methylene blue under irradiation.


Sign in / Sign up

Export Citation Format

Share Document