Reduced Phosphate Availability Improves Tomato Quality Through Hormonal Modulation in Developing Fruits

Author(s):  
Míriam Navarro ◽  
Sergi Munné-Bosch
1998 ◽  
Vol 5 (4) ◽  
pp. 217-223 ◽  
Author(s):  
D PINELLI ◽  
J DRAKE ◽  
M WILLIAMS ◽  
D CAVANAGH ◽  
J BECKER

2021 ◽  
Vol 11 (7) ◽  
pp. 3209
Author(s):  
Karla R. Borba ◽  
Didem P. Aykas ◽  
Maria I. Milani ◽  
Luiz A. Colnago ◽  
Marcos D. Ferreira ◽  
...  

Portable spectrometers are promising tools that can be an alternative way, for various purposes, of analyzing food quality, such as monitoring in a few seconds the internal quality during fruit ripening in the field. A portable/handheld (palm-sized) near-infrared (NIR) spectrometer (Neospectra, Si-ware) with spectral range of 1295–2611 nm, equipped with a micro-electro-mechanical system (MEMs), was used to develop prediction models to evaluate tomato quality attributes non-destructively. Soluble solid content (SSC), fructose, glucose, titratable acidity (TA), ascorbic, and citric acid contents of different types of fresh tomatoes were analyzed with standard methods, and those values were correlated to spectral data by partial least squares regression (PLSR). Fresh tomato samples were obtained in 2018 and 2019 crops in commercial production, and four fruit types were evaluated: Roma, round, grape, and cherry tomatoes. The large variation in tomato types and having the fruits from distinct years resulted in a wide range in quality parameters enabling robust PLSR models. Results showed accurate prediction and good correlation (Rpred) for SSC = 0.87, glucose = 0.83, fructose = 0.87, ascorbic acid = 0.81, and citric acid = 0.86. Our results support the assertion that a handheld NIR spectrometer has a high potential to simultaneously determine several quality attributes of different types of tomatoes in a practical and fast way.


Author(s):  
Guowei Gu ◽  
Lin Tian ◽  
Sarah K. Herzog ◽  
Yassine Rechoum ◽  
Luca Gelsomino ◽  
...  
Keyword(s):  

1989 ◽  
Vol 257 (4) ◽  
pp. L179-L189 ◽  
Author(s):  
D. E. Rannels

In many species, partial resection of the lung leads to rapid compensatory growth of the remaining tissue to restore normal lung mass and function. The response to partial pneumonectomy is closely controlled; both its rate and nature are subject to hormonal modulation. Physical factors, particularly distortion of the lung by altered inflation, are likely involved in regulation of the response, although the details of the regulatory mechanisms are not understood. In a number of tissues including the lung, application of external physical force leads to both acute and long-term changes in metabolism. In some cases these include cell growth and division, along with increased production of extracellular matrix components. Similar responses have been described after application of stress to isolated cells in culture. Independent lines of investigation have defined dramatic influences of cell shape on growth, differentiation, and metabolism, but stress-strain relationships at the cellular or subcellular levels are poorly defined. The mechanisms by which changes in cell shape are transduced to intracellular signals likely depend on receptor-mediated interactions with the cytoskeleton, but strain-associated transduction pathways may involve stretch-sensitive ion channels, G protein-dependent reactions, the action of locally produced autocrine or paracrine factors, or a combination of these factors. These observations suggest a general model of the response to pneumonectomy that may be used to formulate specific hypotheses as a basis for future investigations. This approach will provide insight into the mechanisms by which physical forces influence growth and metabolism in the lung and other tissues.


Life Sciences ◽  
1994 ◽  
Vol 54 (21) ◽  
pp. PL363-PL367 ◽  
Author(s):  
Selva Rivas-Arancibia ◽  
Francisca Vazquez-Pereyra

Endocrinology ◽  
2009 ◽  
Vol 150 (7) ◽  
pp. 3237-3244 ◽  
Author(s):  
Tamara Blutstein ◽  
Peter J. Baab ◽  
H. Ronald Zielke ◽  
Jessica A. Mong

Sign in / Sign up

Export Citation Format

Share Document