Virtual reality of three-dimensional surgical field for surgical planning and intraoperative management

Author(s):  
Atsuko Fujihara ◽  
Osamu Ukimura
2019 ◽  
Vol 26 (9) ◽  
pp. 942-943 ◽  
Author(s):  
Yasuhiro Yamada ◽  
Yuta Inoue ◽  
Masatomo Kaneko ◽  
Atsuko Fujihara ◽  
Fumiya Hongo ◽  
...  

2020 ◽  
Vol 10 (12) ◽  
pp. 963
Author(s):  
Samer Zawy Alsofy ◽  
Ioanna Sakellaropoulou ◽  
Makoto Nakamura ◽  
Christian Ewelt ◽  
Asem Salma ◽  
...  

Anterior-communicating artery (ACoA) aneurysms have diverse configurations and anatomical variations. The evaluation and operative treatment of these aneurysms necessitates a perfect surgical strategy based on review of three-dimensional (3D) angioarchitecture using several radiologic imaging methods. We analyzed the influence of 3D virtual reality (VR) reconstructions versus conventional computed tomography angiography (CTA) scans on the identification of vascular anatomy and on surgical planning in patients with unruptured ACoA aneurysms. Medical files were retrospectively analyzed regarding patient- and disease-related data. Preoperative CTA scans were retrospectively reconstructed to 3D-VR images and visualized via VR software to detect the characteristics of unruptured ACoA aneurysms. A questionnaire was used to evaluate the influence of VR on the identification of aneurysm morphology and relevant arterial anatomy and on surgical strategy. Twenty-six patients were included and 520 answer sheets were evaluated. The 3D-VR modality significantly influenced detection of the aneurysm-related vascular structure (p = 0.0001), the recommended head positioning (p = 0.005), and the surgical approach (p = 0.001) in the planning of microsurgical clipping. Thus, reconstruction of conventional preoperative CTA scans into 3D images and the spatial presentation in VR models enabled greater understanding of the anatomy and pathology, provided realistic haptic feedback for aneurysm surgery, and influenced operation planning and strategy.


2001 ◽  
Vol 5 (2) ◽  
pp. 97-107 ◽  
Author(s):  
James Xia ◽  
H.H.S. Ip ◽  
N. Samman ◽  
H.T.F. Wong ◽  
J. Gateno ◽  
...  

2021 ◽  
Vol 108 (Supplement_1) ◽  
Author(s):  
C Ryan ◽  
E O'Malley ◽  
D Sheppard

Abstract Introduction Nephron-sparing surgery is becoming more common as surgical techniques advance. VR and 3D visualisation appear to provide better anatomical understanding in presurgical planning than two-dimensional alone. 3D models may enable greater tissue salvation and fewer complications. 3D model preparation and advancing research is expensive and time consuming. We aim to pilot study led by medical student, create reliable anatomical kidney models and assess usefulness in surgical planning. Method Routine CT urograms were performed on 128 slice scanner using split bolus technique. Medical student segmented and displayed models in VR using 3DSlicer. Radiology registrar and consultant validated models. Two urology surgeons completed qualitative questionnaires. Result We included two patients. Only minor segmentation tweaks by radiologist ensured accurately demonstrated tumors. Tissue contrast quality varied between CT scans complicating segmentation. Both surgeons deemed models helpful in visualising hilar anatomy, predicting bleeding complications, determining laparoscopic/open and partial/full nephrectomy approach. Surgeons prioritised vasculature visualisation over collecting system. Surgeons suggested gauging tumor depth would be useful. Considering 3D printing cost, surgeons agreed VR alone may suffice. Conclusion Surgeons found 3D and VR enabled accurate surgical planning and patient counselling regarding nephrectomy risk. Minor CT protocol recommendations enable easier and more accurate segmentation, without increasing patient's radiation exposure. Annual leave during 8-week summer project reflects case numbers. Since, we've identified more cases to assess surgical parameters against matched cohort. We've begun work for adrenal surgery. It's feasible for medical students with minimal surgical/radiological knowledge to advance this research, gaining valuable experience. Abbrev Virtual Reality(VR), Three-dimensional(3D), Computerised Tomography(CT) Take-home message Three-dimensional imaging and virtual reality may improve surgical planning and patient counselling. Regarding nephrectomy, this could give surgeons the confidence to convert from full nephrectomy to partial nephrectomy approach, improving patient outcome.


Author(s):  
Bethany Juhnke ◽  
Alex R Mattson ◽  
Daniel Saltzman ◽  
Anthony Azakie ◽  
Eric Hoggard ◽  
...  

We describe the use of virtual reality technology for surgical planning in the successful separation of thoracopagus conjoined twins. Three-dimensional models were created from computed tomography angiograms to simulate the patient’s anatomy on a virtual stereoscopic display. Members of the surgical teams reviewed the anatomical models to localize an interatrial communication that allowed blood to flow between the two hearts. The surgical plan to close the 1-mm interatrial communication was significantly modified based on the pre-procedural spatial awareness of the anatomy presented in the virtual visualization. The virtual stereoscopic display was critical for the surgical team to successfully separate the twins and provides a useful case study for the use of virtual reality technology in surgical planning. Both twins survived the operation and were subsequently discharged from the hospital.


2021 ◽  
Vol 10 (4) ◽  
pp. 681
Author(s):  
Samer Zawy Alsofy ◽  
Makoto Nakamura ◽  
Ayman Suleiman ◽  
Ioanna Sakellaropoulou ◽  
Heinz Welzel Saravia ◽  
...  

Anterior skull base meningiomas represent a wide cohort of tumors with different locations, extensions, configurations, and anatomical relationships. Diagnosis of these tumors and review of their therapies are inseparably connected with cranial imaging. We analyzed the influence of three-dimensional-virtual reality (3D-VR) reconstructions versus conventional computed tomography (CT) and magnetic resonance imaging (MRI) images (two-dimensional (2D) and screen 3D) on the identification of anatomical structures and on the surgical planning in patients with anterior skull base meningiomas. Medical files were retrospectively analyzed regarding patient- and disease-related data. Preoperative 2D-CT and 2D-MRI scans were retrospectively reconstructed to 3D-VR images and visualized via VR software to detect the characteristics of tumors. A questionnaire of experienced neurosurgeons evaluated the influence of the VR visualization technique on identification of tumor morphology and relevant anatomy and on surgical strategy. Thirty patients were included and 600 answer sheets were evaluated. The 3D-VR modality significantly influenced the detection of tumor-related anatomical structures (p = 0.002), recommended head positioning (p = 0.005), and surgical approach (p = 0.03). Therefore, the reconstruction of conventional preoperative 2D scans into 3D images and the spatial and anatomical presentation in VR models enabled greater understanding of anatomy and pathology, and thus influenced operation planning and strategy.


Neurosurgery ◽  
2003 ◽  
Vol 52 (3) ◽  
pp. 499-505 ◽  
Author(s):  
Antonio Bernardo ◽  
Mark C. Preul ◽  
Joseph M. Zabramski ◽  
Robert F. Spetzler

Abstract OBJECTIVE This project involves the development of a three-dimensional surgical simulator called interactive virtual dissection, which is designed to teach surgeons the visuospatial skills required to navigate through a transpetrosal approach. METHODS A robotically controlled microscope is used for surgical planning and data collection. The spatial anatomic data are recorded from sequentially deeper cadaveric head dissections as a series of superimposed anatomic pictures in stereoscopic digital format. The sequential series of images are then merged to form the final virtual representation. RESULTS The current three-dimensional virtual reality simulator allows the user to drill the petrous bone progressively deeper and to identify crucial structures much like an experienced surgeon drilling the petrous bone. The program allows surgeons and trainees to manipulate the virtual “surgical field” by interacting with the surgical anatomy. The interactive system functions on a desktop computer. CONCLUSION The ability to visualize and understand anatomic spatial relationships is crucial in surgical planning, as is a surgeon's confidence in performing the surgery. The virtual reality simulator does not replace the need for practicing surgery on cadavers. However, it is designed to facilitate, via stereoscopic projection, learning how to manipulate a drill in complicated or unfamiliar surgical approaches (e.g., a transpetrosal approach).


Sign in / Sign up

Export Citation Format

Share Document