Adiabatic two phase flow distribution and visualization in scaled microchannel heat sinks

2007 ◽  
Vol 43 (6) ◽  
pp. 873-885 ◽  
Author(s):  
M. Dang ◽  
I. Hassan ◽  
R. Muwanga
2005 ◽  
Vol 2 (2) ◽  
pp. 122-131
Author(s):  
Pradeep Hegde ◽  
K.N. Seetharamu ◽  
P.A. Aswatha Narayana ◽  
Zulkifly Abdullah

Stacked microchannel heat sinks with two-phase flow have been analyzed using the Finite Element Method (FEM). The present method is a simple and practical approach for analyzing the thermal performance of single or multi layered microchannel heat sinks with either single or two-phase flow. A unique 10 noded finite element is used for the channel discretization. Two-phase thermal resistance, pressure drop and pumping power of single, double and triple stack microchannel heat sinks are determined at different base heat fluxes ranging from 150 W/cm2 to 300 W/cm2. The temperature distribution along the length of the microchannel is also plotted. It is found that stacked microchannel heat sinks with two-phase flow are thermally more efficient than two-phase single layer microchannel heat sinks, both in terms of thermal resistance and pumping power requirements. It is observed that the thermal resistance of a double stack microchannel heat sink with two-phase flow is about 40% less than that for a single stack heat sink. A triple stack heat sink yields a further 20% reduction in the thermal resistance and at the same time operates with about 30% less pumping power compared to a single stack heat sink. The effect of channel aspect ratio on the thermal resistance and pressure drop of stacked microchannel heat sinks with two-phase flow are also studied.


Author(s):  
Niccolo Giannetti ◽  
Mark A.B. Redo ◽  
Kiyoshi Saito ◽  
Hiroaki Yoshimura

Author(s):  
Weilin Qu ◽  
Seok-Mann Yoon ◽  
Issam Mudawar

Knowledge of flow pattern and flow pattern transitions is essential to the development of reliable predictive tools for pressure drop and heat transfer in two-phase micro-channel heat sinks. In the present study, experiments were conducted with adiabatic nitrogen-water two-phase flow in a rectangular micro-channel having a 0.406 × 2.032 mm cross-section. Superficial velocities of nitrogen and water ranged from 0.08 to 81.92 m/s and 0.04 to 10.24 m/s, respectively. Flow patterns were first identified using high-speed video imaging, and still photos were then taken for representative patterns. Results reveal that the dominant flow patterns are slug and annular, with bubbly flow occurring only occasionally; stratified and churn flow were never observed. A flow pattern map was constructed and compared with previous maps and predictions of flow pattern transition models. Annual flow is identified as the dominant flow pattern for conditions relevant to two-phase micro-channel heat sinks, and forms the basis for development of a theoretical model for both pressure drop and heat transfer in micro-channels. Features unique to two-phase micro-channel flow, such as laminar liquid and gas flows, smooth liquid-gas interface, and strong entrainment and deposition effects are incorporated into the model. The model shows good agreement with experimental data for water-cooled heat sinks.


Sign in / Sign up

Export Citation Format

Share Document