scholarly journals Horizontal annular flow through orifice studied by X-ray microtomography

2020 ◽  
Vol 62 (1) ◽  
Author(s):  
Paul Porombka ◽  
Stephan Boden ◽  
Dirk Lucas ◽  
Uwe Hampel

AbstractAn X-ray microtomography (µCT) system was adapted so that 3D scans of fixed horizontal or vertical test sections can be performed. The mobile µCT system has been applied to measure the local, time-averaged volume fraction distribution of developing annular air-water flow in a horizontal pipe with µm spatial resolution. Based on the volume fraction data the liquid film thickness profile is computed and the accumulation, stripping and renewal of the annular liquid film at a circular orifice is studied. The development length of the annular flow downstream of the orifice is evaluated based on the integral volume fraction and the change of the film thickness profile along the pipe axis. Both parameters give a consistent result, indicating that liquid film renewal can be judged based on integral measurement techniques in this case. Further, the detailed 3D data enables the validation of computational fluid dynamics codes based on phase-averaged variables such as the Euler-Euler approach. Graphic abstract

Author(s):  
Osokogwu Osokogwu ◽  
◽  
Uche Uche ◽  

The experimental investigations of annular flow were conducted in horizontal pipe using water/air in a 0.0504m internal diameter pipe loop with a total length of 28.68m. To understand annular flow behaviors, conductivity ring sensors, conductance probe sensors and Olympia high speed digital camera were used. In all the experiments, emphasis were on annular flow behavior, phase distribution and liquid film thickness. Liquid film thickness was observed to be thicker mostly when the superficial gas velocities were within 8.2699 m/s to 12.0675 m/s. Above the aforementioned superficial gas velocities, the flow became uniformly distributed on the walls of the internal pipe diameter hence reducing the thicker liquid film at the bottom with gas core at the center of the pipe. More so, annular-slug flow was discovered in the investigation. At superficial liquid velocity of 0.0505 m/s-0.1355 m/s on superficial gas velocities of 8.2699 m/s – 12.0675 m/s, annular-slug flow was prominent. Also discovered was at superficial liquid velocities of 0.0903 m/s - 0.1355 m/s with respect to superficial gas velocities of 13.1692 m/s – 23.4575 m/s, the pipe walls are fully covered with liquid film at very high speed at the entire walls (upper walls and bottom). Also discovered in this experiment is the wavy flow of the upper walls. The liquid film thickness that flows at the upper pipe walls, creeps in a wavy flow. Therefore, the entire flow behavior in an annular flow could be grouped into; wavy-flow at the upper walls, annular-slug flow and thicker liquid film at the bottom with gas core at the center.


2016 ◽  
Vol 42 ◽  
pp. 1660158 ◽  
Author(s):  
JUN YAO ◽  
YUFENG YAO ◽  
ANTONINO ARINI ◽  
STUART MCIIWAIN ◽  
TIMOTHY GORDON

Numerical simulation using computational fluid dynamics (CFD) has been carried out to study air and water two-phase flow in a small horizontal pipe of an inner diameter of 8.8mm, in order to investigate unsteady flow pattern transition behaviours and underlying physical mechanisms. The surface liquid film thickness distributions, determined by either wavy or full annular flow regime, are shown in reasonable good agreement with available experimental data. It was demonstrated that CFD simulation was able to predict wavy flow structures accurately using two-phase flow sub-models embedded in ANSYS-Fluent solver of Eulerian–Eulerian framework, together with a user defined function subroutine ANWAVER-UDF. The flow transient behaviours from bubbly to annular flow patterns and the liquid film distributions revealed the presence of gas/liquid interferences between air and water film interface. An increase of upper wall liquid film thickness along the pipe was observed for both wavy annular and full annular scenarios. It was found that the liquid wavy front can be further broken down to form the water moisture with liquid droplets penetrating upwards. There are discrepancies between CFD predictions and experimental data on the liquid film thickness determined at the bottom and the upper wall surfaces, and the obtained modelling information can be used to assist further 3D user defined function subroutine development, especially when CFD simulation becomes much more expense to model full 3D two-phase flow transient performance from a wavy annular to a fully developed annular type.


Author(s):  
Hiroshi Kanno ◽  
Youngbae Han ◽  
Yusuke Saito ◽  
Naoki Shikazono

Heat transfer in micro scale two-phase flow attracts large attention since it can achieve large heat transfer area per density. At high quality, annular flow becomes one of the major flow regimes in micro two-phase flow. Heat is transferred by evaporation or condensation of the liquid film, which are the dominant mechanisms of micro scale heat transfer. Therefore, liquid film thickness is one of the most important parameters in modeling the phenomena. In macro tubes, large numbers of researches have been conducted to investigate the liquid film thickness. However, in micro tubes, quantitative information for the annular liquid film thickness is still limited. In the present study, annular liquid film thickness is measured using a confocal method, which is used in the previous study [1, 2]. Glass tubes with inner diameters of 0.3, 0.5 and 1.0 mm are used. Degassed water and FC40 are used as working fluids, and the total mass flux is varied from G = 100 to 500 kg/m2s. Liquid film thickness is measured by laser confocal displacement meter (LCDM), and the liquid-gas interface profile is observed by a high-speed camera. Mean liquid film thickness is then plotted against quality for different flow rates and tube diameters. Mean thickness data is compared with the smooth annular film model of Revellin et al. [3]. Annular film model predictions overestimated the experimental values especially at low quality. It is considered that this overestimation is attributed to the disturbances caused by the interface ripples.


Volume 3 ◽  
2004 ◽  
Author(s):  
Daniel J. Rodri´guez ◽  
Timothy A. Shedd

Planar laser induced fluorescence (PLIF) was applied to horizontal air/water two-phase annular flow in order to clearly image the liquid film and interfacial wave behavior at the top, side and bottom of the tube. The visualization section was fabricated from FEP, which has nearly the same refractive index as water at room temperature. This index-matched test section was used to allow imaging of the water to within approximately 10 microns of the 15.1 mm I.D. tube wall. A small amount of dye was added to the water with a peak excitation wavelength near that of a pulsed Nd:YAG laser (532 nm). The laser system generated an approximately 5 ns pulsed light sheet at 30 Hz. Images of the liquid film were captured using a digital video camera with a macro lens for a resolution of about 8.2 microns/pixel. Cross-sectional data at 68 annular flow conditions were obtained. The observations of the liquid film between waves indicated that the film thickness was relatively insensitive to both gas and liquid flow in the annular regime, confirming film thickness measurements reported elsewhere. In addition, the structure of waves changes significantly from wavy-annular, where peaked or cresting waves dominate, to fully annular, where the waves are much more turbulent and unstructured. The wave height decreases with increased gas flow and is relatively insensitive to increased liquid flow in the annular regime. The entrainment of gas in the liquid by the waves is very apparent from these images. Although the precise entrainment mechanisms are not entirely clear, a viable folding action mechanism is proposed. The visualization results will be discussed in relation to both conceptual and computational annular flow modeling.


2015 ◽  
Vol 73 ◽  
pp. 264-274 ◽  
Author(s):  
Youngbae Han ◽  
Hiroshi Kanno ◽  
Young-Ju Ahn ◽  
Naoki Shikazono

2021 ◽  
Author(s):  
Antai Liu ◽  
Haifeng Gu ◽  
Fuqiang Zhu ◽  
Changqi Yan

Abstract As a key physical parameter in annular flow, liquid film thickness is crucial to study the behavior characteristics about gas-liquid interface under annular flow conditions. In this study, the narrow rectangular channel is taken as the research object, and air-water were used as the media to conduct annular flow experiments under atmospheric pressure. The cross-sectional area of the narrow rectangular channel is 70mm × 2mm. The PCB liquid film sensor can realize multi-point measurement of liquid film thickness. A total of 10 × 16 measuring points are arranged in rows and columns on the surface of the channel, with a spatial resolution of 4.4mm × 4.4mm and a measurement speed of 1000 frames per second. The results show the fluctuation of liquid film is dominated by the ripple wave at low superficial liquid velocity. The frequency distribution of film thickness becomes sharper because of the increase of gas flow, i.e. the interfacial surface becomes smoother. The liquid film will become thinner with the increase of gas flow, but the effect is reduced when the gas flow reaches a certain value. The liquid film will thicken and the number of disturbance waves will increase as the increase of the liquid flow.


Sign in / Sign up

Export Citation Format

Share Document