Evoked-potential audiogram variability in a group of wild Yangtze finless porpoises (Neophocaena asiaeorientalis asiaeorientalis)

2020 ◽  
Vol 206 (4) ◽  
pp. 527-541 ◽  
Author(s):  
Zhi-Tao Wang ◽  
Jiao Li ◽  
Peng-Xiang Duan ◽  
Zhi-Gang Mei ◽  
Fu-Qiang Niu ◽  
...  
Author(s):  
R.V. Harrison ◽  
R.J. Mount ◽  
P. White ◽  
N. Fukushima

In studies which attempt to define the influence of various factors on recovery of hair cell integrity after acoustic trauma, an experimental and a control ear which initially have equal degrees of damage are required. With in a group of animals receiving an identical level of acoustic trauma there is more symmetry between the ears of each individual, in respect to function, than between animals. Figure 1 illustrates this, left and right cochlear evoked potential (CAP) audiograms are shown for two chinchillas receiving identical trauma. For this reason the contralateral ear is used as control.To compliment such functional evaluations we have devised a scoring system, based on the condition of hair cell stereocilia as revealed by scanning electron microscopy, which permits total stereociliar damage to be expressed numerically. This quantification permits correlation of the degree of structural pathology with functional changes. In this paper wereport experiments to verify the symmetry of stereociliar integrity between two ears, both for normal (non-exposed) animals and chinchillas in which each ear has received identical noise trauma.


2002 ◽  
Vol 16 (2) ◽  
pp. 71-81 ◽  
Author(s):  
Caroline M. Owen ◽  
John Patterson ◽  
Richard B. Silberstein

Summary Research was undertaken to determine whether olfactory stimulation can alter steady-state visual evoked potential (SSVEP) topography. Odor-air and air-only stimuli were used to determine whether the SSVEP would be altered when odor was present. Comparisons were also made of the topographic activation associated with air and odor stimulation, with the view toward determining whether the revealed topographic activity would differentiate levels of olfactory sensitivity by clearly identifying supra- and subthreshold odor responses. Using a continuous respiration olfactometer (CRO) to precisely deliver an odor or air stimulus synchronously with the natural respiration, air or odor (n-butanol) was randomly delivered into the inspiratory airstream during the simultaneous recording of SSVEPs and subjective behavioral responses. Subjects were placed in groups based on subjective odor detection response: “yes” and “no” detection groups. In comparison to air, SSVEP topography revealed cortical changes in response to odor stimulation for both response groups, with topographic changes evident for those unable to perceive the odor, showing the presence of a subconscious physiological odor detection response. Differences in regional SSVEP topography were shown for those who reported smelling the odor compared with those who remained unaware of the odor. These changes revealed olfactory modulation of SSVEP topography related to odor awareness and sensitivity and therefore odor concentration relative to thresholds.


Sign in / Sign up

Export Citation Format

Share Document