Water absorption and bicarbonate secretion in the intestine of the sea bream are regulated by transmembrane and soluble adenylyl cyclase stimulation

2012 ◽  
Vol 182 (8) ◽  
pp. 1069-1080 ◽  
Author(s):  
Edison S. M. Carvalho ◽  
Sílvia F. Gregório ◽  
Deborah M. Power ◽  
Adelino V. M. Canário ◽  
Juan Fuentes
2017 ◽  
Vol 35 (3) ◽  
pp. 217-223 ◽  
Author(s):  
Jung-Chin Chang ◽  
Ulrich Beuers ◽  
Ronald P.J. Oude Elferink

Background: Primary biliary cholangitis (PBC; previously referred to as primary biliary cirrhosis) is a chronic fibrosing cholangiopathy with the signature of an autoimmune disease and features of intrahepatic cholestasis. Immunosuppressing treatments are largely unsuccessful. Responsiveness to ursodeoxycholic acid and reduced expression of anion exchanger 2 (AE2) on canalicular membranes and small bile ducts underline the importance of bicarbonate transportation in its disease mechanism. Soluble adenylyl cyclase (sAC; ADCY10) is an evolutionarily conserved bicarbonate sensor that regulates apoptosis, barrier function and TNF signaling. Key Messages: The biliary epithelium defends against the toxic bile by bicarbonate secretion and by maintaining a tight barrier. Passive diffusion of weak acid conjugates (e.g. bile salts and other toxins) across plasma membrane is pH-dependent. Reduced AE2 expression results in both reduced bicarbonate secretion and accumulation of bicarbonate in the cells. Increased intracellular bicarbonate leads to increased sAC activity, which regulates bile salt-induced apoptosis. Reduced bicarbonate secretion causes more bile salts to enter cells, which further increase sAC activity by releasing intracellular Ca2+ store. In vitro studies demonstrate that inhibition of sAC not only corrects sensitization to bile salt-induced apoptosis as a result of AE2 down-regulation but also prevents bile salt-induced apoptosis altogether. Targeting sAC is also likely to slow down disease progression by strengthening the barrier function of biliary epithelia and by reducing oxidative stress as a result of chronic inflammation. Conclusions: sAC is a potential therapeutic target for PBC. More in vitro and in vivo studies are needed to understand how sAC regulates bile salt-induced apoptosis and to establish its therapeutic value in PBC and other cholestatic cholangiopathies.


Biochimie ◽  
2006 ◽  
Vol 88 (3-4) ◽  
pp. 319-328 ◽  
Author(s):  
Q FENG ◽  
Y ZHANG ◽  
Y LI ◽  
Z LIU ◽  
J ZUO ◽  
...  

Author(s):  
Jung-Chin Chang ◽  
Simei Go ◽  
Eduardo H. Gilglioni ◽  
Hang Lam Li ◽  
Hsu-Li Huang ◽  
...  

AbstractCyclic AMP is produced in cells by two very different types of adenylyl cyclases: the canonical transmembrane adenylyl cyclases (tmACs, ADCY1∼9) and the evolutionarily more conserved soluble adenylyl cyclase (sAC, ADCY10). While the role and regulation of tmACs is well documented, much less is known of sAC in cellular metabolism. We demonstrate here that sAC is an acute regulator of glycolysis, oxidative phosphorylation and glycogen metabolism, tuning their relative bioenergetic contributions. Suppression of sAC activity leads to aerobic glycolysis, enhanced glycogenolysis, decreased oxidative phosphorylation, and an elevated cytosolic NADH/NAD+ ratio, resembling the Warburg phenotype. Importantly, we found that glycogen metabolism is regulated in opposite directions by cAMP depending on its location of synthesis and downstream effectors. While the canonical tmAC-cAMP-PKA axis promotes glycogenolysis, we identify a novel sAC-cAMP-Epac1 axis that suppresses glycogenolysis. These data suggest that sAC is an autonomous bioenergetic sensor that suppresses aerobic glycolysis and glycogenolysis when ATP levels suffice. When the ATP level falls, diminished sAC activity induces glycogenolysis and aerobic glycolysis to maintain energy homeostasis.


2021 ◽  
Author(s):  
Melanie Balbach ◽  
Lubna Ghanem ◽  
Thomas Rossetti ◽  
Navpreet Kaur ◽  
Carla Ritagliati ◽  
...  

AbstractSoluble adenylyl cyclase (sAC: ADCY10) is essential for activating dormant sperm. Studies of freshly dissected mouse sperm identified sAC as needed for initiating capacitation and activating motility. We now use an improved sAC inhibitor, TDI-10229, for a comprehensive analysis of sAC function in human sperm. Unlike dissected mouse sperm, human sperm are collected post-ejaculation, after sAC activity has already been stimulated. Even in ejaculated human sperm, TDI-10229 interrupts stimulated motility and capacitation, and it prevents acrosome reaction in capacitated sperm. At present, there are no non-hormonal, pharmacological methods for contraception. Because sAC activity is required post-ejaculation at multiple points during the sperm’s journey to fertilize the oocyte, sAC inhibitors define candidates for non-hormonal, on-demand contraceptives suitable for delivery via intravaginal devices in females.


2014 ◽  
Vol 1842 (12) ◽  
pp. 2584-2592 ◽  
Author(s):  
Andreas Schmid ◽  
Dimirela Meili ◽  
Matthias Salathe

2014 ◽  
Vol 1842 (12) ◽  
pp. 2621-2628 ◽  
Author(s):  
Victor D. Vacquier ◽  
Arlet Loza-Huerta ◽  
Juan García-Rincón ◽  
Alberto Darszon ◽  
Carmen Beltrán

Sign in / Sign up

Export Citation Format

Share Document