adenylyl cyclases
Recently Published Documents


TOTAL DOCUMENTS

346
(FIVE YEARS 41)

H-INDEX

59
(FIVE YEARS 4)

Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 88
Author(s):  
Yuehui Tian ◽  
Shang Yang ◽  
Georg Nagel ◽  
Shiqiang Gao

Enzyme rhodopsins, including cyclase opsins (Cyclops) and rhodopsin phosphodiesterases (RhoPDEs), were recently discovered in fungi, algae and protists. In contrast to the well-developed light-gated guanylyl/adenylyl cyclases as optogenetic tools, ideal light-regulated phosphodiesterases are still in demand. Here, we investigated and engineered the RhoPDEs from Salpingoeca rosetta, Choanoeca flexa and three other protists. All the RhoPDEs (fused with a cytosolic N-terminal YFP tag) can be expressed in Xenopus oocytes, except the AsRhoPDE that lacks the retinal-binding lysine residue in the last (8th) transmembrane helix. An N296K mutation of YFP::AsRhoPDE enabled its expression in oocytes, but this mutant still has no cGMP hydrolysis activity. Among the RhoPDEs tested, SrRhoPDE, CfRhoPDE1, 4 and MrRhoPDE exhibited light-enhanced cGMP hydrolysis activity. Engineering SrRhoPDE, we obtained two single point mutants, L623F and E657Q, in the C-terminal catalytic domain, which showed ~40 times decreased cGMP hydrolysis activity without affecting the light activation ratio. The molecular characterization and modification will aid in developing ideal light-regulated phosphodiesterase tools in the future.


2021 ◽  
Vol 119 (1) ◽  
pp. e2119237119
Author(s):  
Brian S. Muntean ◽  
Subhi Marwari ◽  
Xiaona Li ◽  
Douglas C. Sloan ◽  
Brian D. Young ◽  
...  

Cyclic adenosine monophosphate (cAMP) is a pivotal second messenger with an essential role in neuronal function. cAMP synthesis by adenylyl cyclases (AC) is controlled by G protein–coupled receptor (GPCR) signaling systems. However, the network of molecular players involved in the process is incompletely defined. Here, we used CRISPR/Cas9–based screening to identify that members of the potassium channel tetradimerization domain (KCTD) family are major regulators of cAMP signaling. Focusing on striatal neurons, we show that the dominant isoform KCTD5 exerts its effects through an unusual mechanism that modulates the influx of Zn2+ via the Zip14 transporter to exert unique allosteric effects on AC. We further show that KCTD5 controls the amplitude and sensitivity of stimulatory GPCR inputs to cAMP production by Gβγ-mediated AC regulation. Finally, we report that KCTD5 haploinsufficiency in mice leads to motor deficits that can be reversed by chelating Zn2+. Together, our findings uncover KCTD proteins as major regulators of neuronal cAMP signaling via diverse mechanisms.


Author(s):  
Katrina F. Ostrom ◽  
Justin E. LaVigne ◽  
Tarsis F. Brust ◽  
Roland Seifert ◽  
Carmen W Dessauer ◽  
...  

Adenylyl cyclases (ACs) catalyze the conversion of ATP to the ubiquitous second messenger cAMP. Mammals possess nine isoforms of transmembrane ACs, dubbed AC1-9, that serve as major effector enzymes of G protein-coupled receptors. The transmembrane ACs display varying expression patterns across tissues, giving potential for them having a wide array of physiologic roles. Cells express multiple AC isoforms, implying that ACs have redundant functions. Furthermore, all transmembrane ACs are activated by Gαs so it was long assumed that all ACs are activated by Gαs-coupled GPCRs. AC isoforms partition to different microdomains of the plasma membrane and form prearranged signaling complexes with specific GPCRs that contribute to cAMP signaling compartments. This compartmentation allows for a diversity of cellular and physiological responses by enabling unique signaling events to be triggered by different pools of cAMP. Isoform specific pharmacological activators or inhibitors are lacking for most ACs, making knockdown and overexpression the primary tools for examining the physiological roles of a given isoform. Much progress has been made in understanding the physiological effects mediated through individual transmembrane ACs. GPCR-AC-cAMP signaling pathways play significant roles in regulating functions of every cell and tissue, so understanding each AC isoform's role holds potential for uncovering new approaches for treating a vast array of pathophysiological conditions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Inas Al-Younis ◽  
Basem Moosa ◽  
Mateusz Kwiatkowski ◽  
Krzysztof Jaworski ◽  
Aloysius Wong ◽  
...  

Adenylyl cyclases (ACs) and their catalytic product cAMP are regulatory components of many plant responses. Here, we show that an amino acid search motif based on annotated adenylate cyclases (ACs) identifies 12 unique Arabidopsis thaliana candidate ACs, four of which have a role in the biosynthesis of the stress hormone abscisic acid (ABA). One of these, the 9-cis-epoxycarotenoid dioxygenase (NCED3 and At3g14440), was identified by sequence and structural analysis as a putative AC and then tested experimentally with two different methods. Given that the in vitro activity is low (fmoles cAMP pmol−1 protein min−1), but highly reproducible, we term the enzyme a crypto-AC. Our results are consistent with a role for ACs with low activities in multi-domain moonlighting proteins that have at least one other distinct molecular function, such as catalysis or ion channel activation. We propose that crypto-ACs be examined from the perspective that considers their low activities as an innate feature of regulatory ACs embedded within multi-domain moonlighting proteins. It is therefore conceivable that crypto-ACs form integral components of complex plant proteins participating in intra-molecular regulatory mechanisms, and in this case, potentially linking cAMP to ABA synthesis.


2021 ◽  
Vol 22 (16) ◽  
pp. 8414
Author(s):  
Tatiana M. Vinogradova ◽  
Edward G. Lakatta

The sinoatrial (SA) node is the physiological pacemaker of the heart, and resting heart rate in humans is a well-known risk factor for cardiovascular disease and mortality. Consequently, the mechanisms of initiating and regulating the normal spontaneous SA node beating rate are of vital importance. Spontaneous firing of the SA node is generated within sinoatrial nodal cells (SANC), which is regulated by the coupled-clock pacemaker system. Normal spontaneous beating of SANC is driven by a high level of cAMP-mediated PKA-dependent protein phosphorylation, which rely on the balance between high basal cAMP production by adenylyl cyclases and high basal cAMP degradation by cyclic nucleotide phosphodiesterases (PDEs). This diverse class of enzymes includes 11 families and PDE3 and PDE4 families dominate in both the SA node and cardiac myocardium, degrading cAMP and, consequently, regulating basal cardiac pacemaker function and excitation-contraction coupling. In this review, we will demonstrate similarities between expression, distribution, and colocalization of various PDE subtypes in SANC and cardiac myocytes of different species, including humans, focusing on PDE3 and PDE4. Here, we will describe specific targets of the coupled-clock pacemaker system modulated by dual PDE3 + PDE4 activation and provide evidence that concurrent activation of PDE3 + PDE4, operating in a synergistic manner, regulates the basal cardiac pacemaker function and provides control over normal spontaneous beating of SANCs through (PDE3 + PDE4)-dependent modulation of local subsarcolemmal Ca2+ releases (LCRs).


2021 ◽  
Author(s):  
Gianna Giacoletti ◽  
Tatum Price ◽  
Lucas V. B. Hoelz ◽  
Abdulwhab Shremo Msdi ◽  
Katerina Vazquez-Falto ◽  
...  

Adenylyl cyclases (ACs) catalyze the production of the second messenger cyclic adenosine monophosphate from adenosine triphosphate. Among the ten different AC isoforms, studies with knockout animals indicate that inhibition of AC1 can relieve pain and reduce behaviors linked to opioid dependence. We previously identified ST034307 as a selective inhibitor of AC1. The development of an AC1-selective inhibitor now provides the opportunity to further study the therapeutic potential of inhibiting this protein in pre-clinical animal models of pain and related adverse reactions. In the present study we have shown that ST034307 relieves pain in mouse models of formalin-induced inflammatory pain, acid-induced visceral pain, and acid-depressed nesting. In addition, ST034307 did not cause analgesic tolerance after chronic dosing. We also show that the compound is restricted to the periphery following subcutaneous injections and report the predicted molecular interaction between ST034307 and AC1. Our results indicate that AC1 inhibitors represent a promising new class of analgesic agents that treat pain and appear to produce less adverse effects than currently-used opioids.


2021 ◽  
Vol 22 (9) ◽  
pp. 4641
Author(s):  
Thi Mong Diep Nguyen ◽  
Laura Filliatreau ◽  
Danièle Klett ◽  
Nong Van Hai ◽  
Nguyen Thuy Duong ◽  
...  

In contrast to all transmembrane adenylyl cyclases except ADCY9, the cytosolic soluble adenylyl cyclase (ADCY10) is insensitive to forskolin stimulation and is uniquely modulated by calcium and bicarbonate ions. In the present paper, we focus on ADCY10 localization and a kinetic analysis of intracellular cAMP accumulation in response to human LH in the absence or presence of four different ADCY10 inhibitors (KH7, LRE1, 2-CE and 4-CE) in MTLC-1 cells. ADCY10 was immuno-detected in the cytoplasm of MLTC-1 cells and all four inhibitors were found to inhibit LH-stimulated cAMP accumulation and progesterone level in MLTC-1 and testosterone level primary Leydig cells. Interestingly, similar inhibitions were also evidenced in mouse testicular Leydig cells. In contrast, the tmAC-specific inhibitors ddAdo3′ and ddAdo5′, even at high concentration, exerted weak or no inhibition on cAMP accumulation, suggesting an important role of ADCY10 relative to tmACs in the MLTC-1 response to LH. The strong synergistic effect of HCO3− under LH stimulation further supports the involvement of ADCY10 in the response to LH.


2021 ◽  
Author(s):  
Inas Al-Younis ◽  
Aloysius Wong ◽  
Basem Moosa ◽  
Mateusz Kwiatkowski ◽  
Krzysztof Jaworski ◽  
...  

AbstractAdenylyl cyclases (ACs) and their catalytic product cAMP are regulatory components of plant responses. AC domains are intrinsic components of complex molecules with multiple functions, some of which are co-regulated by cAMP. Here we used an amino acid search motif based on annotated ACs in organisms across species to identify 12 unique Arabidopsis thaliana candidate ACs, four of which have a role in the biosynthesis of the stress hormone abscisic acid (ABA). One of these, the 9-cis-epoxycarotenoid dioxygenase (NCED3, At3g14440), was identified by sequence and structural analysis as a putative AC and then tested experimentally for activity. We show that an NCED3 AC fragment can complement an AC deficient E. coli mutant and this rescue is nullified when key amino acids in the AC motif are mutated. AC activity was also confirmed by tandem liquid chromatography mass spectrometry (LC-MS/MS). Our results are consistent with a moonlighting role for mononucleotide cyclases in multi-domain proteins that have at least one other distinct molecular function such as catalysis or ion channel activation and promise to yield new insights into tuning mechanisms of ABA dependent plant responses. Finally, our search method can also be applied to discover ACs in other species including Homo sapiens.HighlightsAn adenylyl cyclase (AC) catalytic center motif identifies novel ACs in plantsACs can moonlight in complex proteins with other enzymatic domainsA 9-cis-epoxycarotenoid dioxygenase essential for abscisic acid synthesis contains an ACThis finding implicates cAMP in abscisic acid synthesis and signaling


2021 ◽  
Author(s):  
Marian S. Vogt ◽  
Roi R. Ngouoko Nguepbeu ◽  
Michael K. F. Mohr ◽  
Sonja-Verena Albers ◽  
Lars-Oliver Essen ◽  
...  

CYTH is a large protein superfamily that is conserved in all three domains of life with its unique triphosphate tunnel metalloenzyme (TTM) fold. Besides phosphatase functions, e.g. as RNA triphosphatase, inorganic polyphosphatase or thiamine triphosphatase, some CYTH orthologs cyclize nucleotide triphosphates to 3,5-cyclic nucleotides. So far, archaeal CYTH proteins are annotated as adenylyl cyclases although experimental evidence is lacking. To address this gap, we characterized a CYTH ortholog, SaTTM, from the crenarchaeote Sulfolobus acidocaldarius. Our initial in silico studies suggested a close relationship between archaeal CYTH enzymes and class IV adenylyl cyclases compared to the other CYTH-subclasses, but biochemical data showed no cyclic nucleotide production. Instead, our structural and functional analyses show a classical TTM behavior. The Ca2+-inhibited Michaelis complex indicates a two-metal ion reaction mechanism analogous to other TTMs. Different co-crystal structures of SaTTM further reveal conformational dynamics in SaTTM, let us to assume feedback inhibition in TTMs due to tunnel closure in the product state. Combining our structural insights with sequence-similarity network based in silico analysis, we further set out a firm molecular basis for distinguishing CYTH orthologs with phosphatase activities from class IV adenylyl cyclases.


Sign in / Sign up

Export Citation Format

Share Document