soluble adenylyl cyclase
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 24)

H-INDEX

35
(FIVE YEARS 3)

Author(s):  
Juan J. Ferreira ◽  
Pascale Lybaert ◽  
Lis C. Puga-Molina ◽  
Celia M. Santi

To fertilize an egg, mammalian sperm must undergo capacitation in the female genital tract. A key contributor to capacitation is the calcium (Ca2+) channel CatSper, which is activated by membrane depolarization and intracellular alkalinization. In mouse epididymal sperm, membrane depolarization by exposure to high KCl triggers Ca2+ entry through CatSper only in alkaline conditions (pH 8.6) or after in vitro incubation with bicarbonate (HCO3–) and bovine serum albumin (capacitating conditions). However, in ejaculated human sperm, membrane depolarization triggers Ca2+ entry through CatSper in non-capacitating conditions and at lower pH (< pH 7.4) than is required in mouse sperm. Here, we aimed to determine the mechanism(s) by which CatSper is activated in mouse and human sperm. We exposed ejaculated mouse and human sperm to high KCl to depolarize the membrane and found that intracellular Ca2+ concentration increased at pH 7.4 in sperm from both species. Conversely, intracellular Ca2+ concentration did not increase under these conditions in mouse epididymal or human epididymal sperm. Furthermore, pre-incubation with HCO3– triggered an intracellular Ca2+ concentration increase in response to KCl in human epididymal sperm. Treatment with protein kinase A (PKA) inhibitors during exposure to HCO3– inhibited Ca2+ concentration increases in mouse epididymal sperm and in both mouse and human ejaculated sperm. Finally, we show that soluble adenylyl cyclase and increased intracellular pH are required for the intracellular Ca2+ concentration increase in both human and mouse sperm. In summary, our results suggest that a conserved mechanism of activation of CatSper channels is present in both human and mouse sperm. In this mechanism, HCO3– in semen activates the soluble adenylyl cyclase/protein kinase A pathway, which leads to increased intracellular pH and sensitizes CatSper channels to respond to membrane depolarization to allow Ca2+ influx. This indirect mechanism of CatSper sensitization might be an early event capacitation that occurs as soon as the sperm contact the semen.


Author(s):  
Melanie Balbach ◽  
Lubna Ghanem ◽  
Thomas Rossetti ◽  
Navpreet Kaur ◽  
Carla Ritagliati ◽  
...  

Abstract Soluble adenylyl cyclase (sAC: ADCY10) has been genetically confirmed to be essential for male fertility in mice and humans. In mice, ex vivo studies of dormant, caudal epididymal sperm demonstrated that sAC is required for initiating capacitation and activating motility. We now use an improved sAC inhibitor, TDI-10229, for a comprehensive analysis of sAC function in mouse and human sperm. In contrast to caudal epididymal mouse sperm, human sperm are collected post-ejaculation, after sAC activity has already been stimulated. In addition to preventing the capacitation-induced stimulation of sAC and protein kinase A activities, tyrosine phosphorylation, alkalinization, beat frequency, and acrosome reaction in dormant mouse sperm, sAC inhibitors interrupt each of these capacitation-induced changes in ejaculated human sperm. Furthermore, we show for the first time that sAC is required during acrosomal exocytosis in mouse and human sperm. These data define sAC inhibitors as candidates for non-hormonal, on-demand contraceptives suitable for delivery via intravaginal devices in women.


Author(s):  
Makoto Fushimi ◽  
Hannes Buck ◽  
Melanie Balbach ◽  
Anna Gorovyy ◽  
Jacob Ferreira ◽  
...  

2021 ◽  
Author(s):  
Heinz Gerd Koerschen ◽  
Hussein Hamzeh ◽  
Rene Pascal ◽  
Luis Alvarez ◽  
Wolfgang Boenigk ◽  
...  

The reaction of CO2 with H2O to form HCO3- and H+ is one of the most important chemical equilibria in cells. In mammalian sperm, a soluble adenylyl cyclase (sAC) serves as cellular HCO3- sensor that conveys the equilibrium state via cAMP synthesis to cAMP-signaling molecules. The function of sAC and cAMP in non-mammalian sperm is largely unknown. Here, we identify sAC orthologs in sea urchin and salmon sperm that, surprisingly, are activated by alkaline pH rather than HCO3-. Two amino-acid residues required for HCO3- binding of mammalian sAC are lacking in pH-regulated sAC. Orthologs identified in ten other phyla are also lacking either one of these key residues, suggesting that pH control is widespread among non-mammalian metazoan. The pH-sensitive sAC controls several functions of sperm from external fertilizers. Upon spawning, alkalization triggers cAMP synthesis and, thereby, activates motility of quiescent sperm. Egg-derived chemoattractants also alkalize sperm and elevate cAMP, which then-modulates pacemaker HCN channels to trigger a chemotactic Ca2+ response. Finally, the sAC and the voltage- and cAMP-activated Na+/H+ exchanger sNHE mutually control each other. A picture of evolutionary significance is emerging: motility and sensory signaling of sperm from both internal and external fertilizers rely on cAMP, yet, their sAC is regulated by HCO3- or pHi, respectively. Acidification of aquatic habitats due to climate change may adversely affect pH-sensing by sAC and thereby sexual reproduction in the sea.


2021 ◽  
Author(s):  
Melanie Balbach ◽  
Lubna Ghanem ◽  
Thomas Rossetti ◽  
Navpreet Kaur ◽  
Carla Ritagliati ◽  
...  

AbstractSoluble adenylyl cyclase (sAC: ADCY10) is essential for activating dormant sperm. Studies of freshly dissected mouse sperm identified sAC as needed for initiating capacitation and activating motility. We now use an improved sAC inhibitor, TDI-10229, for a comprehensive analysis of sAC function in human sperm. Unlike dissected mouse sperm, human sperm are collected post-ejaculation, after sAC activity has already been stimulated. Even in ejaculated human sperm, TDI-10229 interrupts stimulated motility and capacitation, and it prevents acrosome reaction in capacitated sperm. At present, there are no non-hormonal, pharmacological methods for contraception. Because sAC activity is required post-ejaculation at multiple points during the sperm’s journey to fertilize the oocyte, sAC inhibitors define candidates for non-hormonal, on-demand contraceptives suitable for delivery via intravaginal devices in females.


2021 ◽  
Vol 22 (9) ◽  
pp. 4641
Author(s):  
Thi Mong Diep Nguyen ◽  
Laura Filliatreau ◽  
Danièle Klett ◽  
Nong Van Hai ◽  
Nguyen Thuy Duong ◽  
...  

In contrast to all transmembrane adenylyl cyclases except ADCY9, the cytosolic soluble adenylyl cyclase (ADCY10) is insensitive to forskolin stimulation and is uniquely modulated by calcium and bicarbonate ions. In the present paper, we focus on ADCY10 localization and a kinetic analysis of intracellular cAMP accumulation in response to human LH in the absence or presence of four different ADCY10 inhibitors (KH7, LRE1, 2-CE and 4-CE) in MTLC-1 cells. ADCY10 was immuno-detected in the cytoplasm of MLTC-1 cells and all four inhibitors were found to inhibit LH-stimulated cAMP accumulation and progesterone level in MLTC-1 and testosterone level primary Leydig cells. Interestingly, similar inhibitions were also evidenced in mouse testicular Leydig cells. In contrast, the tmAC-specific inhibitors ddAdo3′ and ddAdo5′, even at high concentration, exerted weak or no inhibition on cAMP accumulation, suggesting an important role of ADCY10 relative to tmACs in the MLTC-1 response to LH. The strong synergistic effect of HCO3− under LH stimulation further supports the involvement of ADCY10 in the response to LH.


Author(s):  
Jakyung Bang ◽  
Marek M. Drozdz ◽  
Lauren Dong ◽  
Taha Merghoub ◽  
Jonathan H. Zippin

2021 ◽  
Vol 11 (2) ◽  
pp. 20200034
Author(s):  
Tom Rossetti ◽  
Stephanie Jackvony ◽  
Jochen Buck ◽  
Lonny R. Levin

Soluble adenylyl cyclase (sAC; ADCY10) is a bicarbonate (HCO 3 − )-regulated enzyme responsible for the generation of cyclic adenosine monophosphate (cAMP). sAC is distributed throughout the cell and within organelles and, as such, plays a role in numerous cellular signalling pathways. Carbonic anhydrases (CAs) nearly instantaneously equilibrate HCO 3 − , protons and carbon dioxide (CO 2 ); because of the ubiquitous presence of CAs within cells, HCO 3 − -regulated sAC can respond to changes in any of these factors. Thus, sAC can function as a physiological HCO 3 − /CO 2 /pH sensor. Here, we outline examples where we have shown that sAC responds to changes in HCO 3 − , CO 2 or pH to regulate diverse physiological functions.


Sign in / Sign up

Export Citation Format

Share Document