Faculty Opinions recommendation of Endothelial CD99 signals through soluble adenylyl cyclase and PKA to regulate leukocyte transendothelial migration.

Author(s):  
Dietmar Vestweber
2015 ◽  
Vol 212 (7) ◽  
pp. 1021-1041 ◽  
Author(s):  
Richard L. Watson ◽  
Jochen Buck ◽  
Lonny R. Levin ◽  
Ryan C. Winger ◽  
Jing Wang ◽  
...  

CD99 is a critical regulator of leukocyte transendothelial migration (TEM). How CD99 signals during this process remains unknown. We show that during TEM, endothelial cell (EC) CD99 activates protein kinase A (PKA) via a signaling complex formed with the lysine-rich juxtamembrane cytoplasmic tail of CD99, the A-kinase anchoring protein ezrin, and soluble adenylyl cyclase (sAC). PKA then stimulates membrane trafficking from the lateral border recycling compartment to sites of TEM, facilitating the passage of leukocytes across the endothelium. Pharmacologic or genetic inhibition of EC sAC or PKA, like CD99 blockade, arrests neutrophils and monocytes partway through EC junctions, in vitro and in vivo, without affecting leukocyte adhesion or the expression of relevant cellular adhesion molecules. This is the first description of the CD99 signaling pathway in TEM as well as the first demonstration of a role for sAC in leukocyte TEM.


Biochimie ◽  
2006 ◽  
Vol 88 (3-4) ◽  
pp. 319-328 ◽  
Author(s):  
Q FENG ◽  
Y ZHANG ◽  
Y LI ◽  
Z LIU ◽  
J ZUO ◽  
...  

Author(s):  
Jung-Chin Chang ◽  
Simei Go ◽  
Eduardo H. Gilglioni ◽  
Hang Lam Li ◽  
Hsu-Li Huang ◽  
...  

AbstractCyclic AMP is produced in cells by two very different types of adenylyl cyclases: the canonical transmembrane adenylyl cyclases (tmACs, ADCY1∼9) and the evolutionarily more conserved soluble adenylyl cyclase (sAC, ADCY10). While the role and regulation of tmACs is well documented, much less is known of sAC in cellular metabolism. We demonstrate here that sAC is an acute regulator of glycolysis, oxidative phosphorylation and glycogen metabolism, tuning their relative bioenergetic contributions. Suppression of sAC activity leads to aerobic glycolysis, enhanced glycogenolysis, decreased oxidative phosphorylation, and an elevated cytosolic NADH/NAD+ ratio, resembling the Warburg phenotype. Importantly, we found that glycogen metabolism is regulated in opposite directions by cAMP depending on its location of synthesis and downstream effectors. While the canonical tmAC-cAMP-PKA axis promotes glycogenolysis, we identify a novel sAC-cAMP-Epac1 axis that suppresses glycogenolysis. These data suggest that sAC is an autonomous bioenergetic sensor that suppresses aerobic glycolysis and glycogenolysis when ATP levels suffice. When the ATP level falls, diminished sAC activity induces glycogenolysis and aerobic glycolysis to maintain energy homeostasis.


2021 ◽  
Author(s):  
Melanie Balbach ◽  
Lubna Ghanem ◽  
Thomas Rossetti ◽  
Navpreet Kaur ◽  
Carla Ritagliati ◽  
...  

AbstractSoluble adenylyl cyclase (sAC: ADCY10) is essential for activating dormant sperm. Studies of freshly dissected mouse sperm identified sAC as needed for initiating capacitation and activating motility. We now use an improved sAC inhibitor, TDI-10229, for a comprehensive analysis of sAC function in human sperm. Unlike dissected mouse sperm, human sperm are collected post-ejaculation, after sAC activity has already been stimulated. Even in ejaculated human sperm, TDI-10229 interrupts stimulated motility and capacitation, and it prevents acrosome reaction in capacitated sperm. At present, there are no non-hormonal, pharmacological methods for contraception. Because sAC activity is required post-ejaculation at multiple points during the sperm’s journey to fertilize the oocyte, sAC inhibitors define candidates for non-hormonal, on-demand contraceptives suitable for delivery via intravaginal devices in females.


Sign in / Sign up

Export Citation Format

Share Document