scholarly journals Hypoxia attenuate ionic transport in the isolated gill epithelium of Carcinus maenas

2020 ◽  
Vol 190 (4) ◽  
pp. 391-401
Author(s):  
Čedomil Lucu
2016 ◽  
Vol 94 (2) ◽  
pp. 95-107 ◽  
Author(s):  
S. Fehsenfeld ◽  
D. Weihrauch

The present study investigated acid–base regulatory mechanisms in seawater-acclimated green crabs (Carcinus maenas (L., 1758)). In full-strength seawater, green crabs are osmoconformers so that the majority of the observed responses were attributed to ion fluxes based on acid–base compensatory responses alone. Similar to observations in brackish-water-acclimated C. maenas, seawater-acclimated green crabs exposed to hypercapnia rapidly accumulated HCO3− in their hemolymph, compensating for the respiratory acidosis caused by excess hemolymph pCO2. A full recovery from the decreased hemolymph pH after 48 h, however, was not observed. Gill perfusion experiments on anterior gill No. 5 indicated the involvement of all investigated genes (i.e., bicarbonate transporters, V-(H+)-ATPase, Na+/K+-ATPase, K+-channels, Na+/H+-exchanger, and carbonic anhydrase) in the excretion of acid–base equivalents. The most significant effects were observed when targeting a potentially cytoplasmic and (or) basolaterally localized V-(H+)-ATPase, as well as potentially basolaterally localized bicarbonate transporter (likely a Na+/HCO3−-cotransporter). In both cases, H+ accumulated in the hemolymph and CO2 excretion across the gill epithelium was significantly reduced or even reversed when blocking bicarbonate transporters. Based on the findings in this study, a working model for acid–base regulatory mechanisms and their link to ammonia excretion in the gill epithelium of C. maenas has been developed.


Author(s):  
David H. Evans ◽  
Peter M. Piermarini ◽  
W.T.W. Potts

1989 ◽  
Vol 21 (2) ◽  
pp. 299-318 ◽  
Author(s):  
Ph Compere ◽  
S Wanson ◽  
A Pequeux ◽  
R Gilles ◽  
G Goffinet

1996 ◽  
Vol 199 (7) ◽  
pp. 1545-1554 ◽  
Author(s):  
S Riestenpatt ◽  
H Onken ◽  
D Siebers

Mechanisms of active NaCl uptake across the posterior gills of the shore crab Carcinus maenas were examined using radiochemical and electrophysiological techniques. In order to measure short-circuit current (Isc), transepithelial conductance (Gte) and area-related unidirectional fluxes of Na+ and Cl-, single split gill lamellae (epithelium plus cuticle) of hyperregulating shore crabs were mounted in a modified Ussing chamber. The negative short-circuit current measured with haemolymph-like NaCl saline on both sides of the epithelium could be inhibited by application of basolateral ouabain (ouabain inhibitor constant KOua=56±10 µmol l-1), 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB; KNPPB=7.5±2.5 mmol l-1) or Cs+ (10 mmol l-1). From the apical side, Isc was nearly completely blocked by Cs+ (10 mmol l-1) or Ba2+ (15 µmol l-1), whereas apical addition of furosemide (1 mmol l-1) resulted in only a small current decrease. Cl- influxes were linearly related to negative Isc. The ratio between net influxes of Cl- and Na+ was found to be approximately 2:1. With a single membrane preparation, achieved by permeabilizing the basolateral membrane with amphotericin B, Cl- influxes which were driven by a concentration gradient were shown to depend on the presence of apical Na+ and K+. On the basis of these observations, we propose that active and electrogenic absorption of NaCl across the gill epithelium of hyperregulating shore crabs proceeds as in the thick ascending limb of Henle's loop in the mammalian nephron. Accordingly, branchial NaCl transport is mediated by apical K+ channels in cooperation with apical Na+/K+/2Cl- cotransporters and by the basolateral Na+/K+-ATPase and basolateral Cl- channels.


Author(s):  
G.M. Vernon ◽  
A. Surace ◽  
R. Witkus

The hepatopancreas consists of a pair of bilobed tubules comprised of two epithelial cell types. S cells are absorptive and accumulate metals such as copper and zinc. Ca++ concentrations vary between the S and B cells and during the molt cycle. Roer and Dillaman implicated Ca++-ATPase in calcium transport during molting in Carcinus maenas. This study was undertaken to compare the localization of Ca++-ATPase activity in the S and B cells during intermolt.


Sign in / Sign up

Export Citation Format

Share Document