Ca++-ATPase activity in the hepatopancreas cells of Oniscus asellus

Author(s):  
G.M. Vernon ◽  
A. Surace ◽  
R. Witkus

The hepatopancreas consists of a pair of bilobed tubules comprised of two epithelial cell types. S cells are absorptive and accumulate metals such as copper and zinc. Ca++ concentrations vary between the S and B cells and during the molt cycle. Roer and Dillaman implicated Ca++-ATPase in calcium transport during molting in Carcinus maenas. This study was undertaken to compare the localization of Ca++-ATPase activity in the S and B cells during intermolt.

2001 ◽  
Vol 204 (8) ◽  
pp. 1433-1444 ◽  
Author(s):  
P. Chavez-Crooker ◽  
N. Garrido ◽  
G.A. Ahearn

The hepatopancreas of the American lobster (Homarus americanus) possesses four types of epithelial cells arranged along blind-ended tubules. At the distal tips of these tubules, stem cells termed E-cells differentiate into three other cell types, R-cells, F-cells and B-cells, each of which have different absorptive and secretory roles in the biology of the overall organ. This investigation uses centrifugal elutriation to separate the individual hepatopancreatic epithelial cell types of Homarus americanus and to investigate their plasma membrane copper transport properties using the copper-sensitive fluorescent dye Phen Green. Results show highly dissimilar endogenous concentrations of copper in each cell type and within the vacuoles (vesicles) released from these cells during the centrifugation process ([copper] in vacuoles>E-cells>R-cells>F-cells approximately B-cells). All four cell types were able to absorb copper from external concentrations ranging from 0.01 to 8 micromol l(−1), but considerable differences in transport rates occurred between the cell types. External calcium (0--10 mmol l(−1)) stimulated the uptake of external copper in a saturable fashion, suggesting the occurrence of carrier-mediated metal uptake. Addition of the Ca(2+) channel blocker verapamil (30 micromol l(−1)) to the external medium reduced the uptake rate of copper by all four cell types, but to different extents in each type of cell. External zinc (0--1000 nmol l(−1)) was a competitive inhibitor of copper influx in E- and R-cells, suggesting that the two metals shared the same binding and transport mechanism. A model is proposed which suggests that copper may enter all hepatopancreatic epithelial cell types by a divalent cation antiport process that exchanges intracellular Ca(2+) (or other cations) with either external copper or zinc. Verapamil-sensitive Ca(2+) channels may allow access of external calcium to cytoplasmic exchange sites on the antiporter or to activator sites on the same transport protein. The results suggest that elutriation is an excellent technique for the separation of complex invertebrate organ systems into their separate cell types and for analyzing the physiological properties of each cell type in isolation.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S326-S327
Author(s):  
Simone A Thair ◽  
Yudong He ◽  
Yehudit Hasin-Brumshtein ◽  
Suraj Sakaram ◽  
Rushika R Pandya ◽  
...  

Abstract Background COVID-19 is a pandemic caused by the SARS-CoV-2 virus that shares and differs in clinical characteristics of known viral infections. Methods We obtained RNAseq profiles of 62 prospectively enrolled COVID-19 patients and 24 healthy controls (HC). We collected 23 independent studies profiling 1,855 blood samples from patients covering six viruses (influenza, RSV, HRV, Ebola, Dengue and SARS-CoV-1). We studied host whole-blood transcriptomic responses in COVID-19 compared to non-COVID-19 viral infections to understand similarities and differences in host response. Gene signature threshold was absolute effect size ≥1, FDR ≤ 0.05%. Results Differential gene expression of COVID-19 vs HC are highly correlated with non-COVID-19 vs HC (r=0.74, p< 0.001). We discovered two gene signatures: COVID-19 vs HC (2002 genes) (COVIDsig) and non-COVID-19 vs HC (635 genes) (nonCOVIDsig). Pathway analysis of over-expressed signature genes in COVIDsig or nonCOVIDsig identified similar pathways including neutrophil activation, innate immune response, immune response to viral infection and cytokine production. Conversely, for under-expressed genes, pathways indicated repression of lymphocyte differentiation and activation (Fig1). Intersecting the two gene signatures found two genes significantly oppositely regulated (ACO1, ATL3). We derived a third gene signature using COCONUT to compare COVID-19 to non-COVID-19 viral infections (416 genes) (Fig2). Pathway analysis did not result in significant enrichment, suggesting identification of novel biology (Fig1). Statistical deconvolution of bulk transcriptomic data found M1 macrophages, plasmacytoid dendritic cells, CD14+ monocytes, CD4+ T cells and total B cells changed in the same direction across COVID-19 and non-COVID-19 infections. Cell types that increased in COVID-19 relative to non-COVID-19 were CD56bright NK cells, M2 macrophages and total NK cells. Those that decreased in non-COVID-19 relative to COVID-19 were CD56dim NK cells & memory B cells and eosinophils (Fig3). Figure 1 Figure 2 Figure 3 Conclusion The concordant and discordant responses mapped here provide a window to explore the pathophysiology of COVID-19 vs other viral infections and show clear differences in signaling pathways and cellularity as part of the host response to SARS-CoV-2. Disclosures Simone A. Thair, PhD, Inflammatix, Inc. (Employee, Shareholder) Yudong He, PhD, Inflammatix Inc. (Employee) Yehudit Hasin-Brumshtein, PhD, Inflammatix (Employee, Shareholder) Suraj Sakaram, MS in Biochemistry and Molecular Biology, Inflammatix (Employee, Other Financial or Material Support, stock options) Rushika R. Pandya, MS, Inflammatix Inc. (Employee, Shareholder) David C. Rawling, PhD, Inflammatix Inc. (Employee, Shareholder) Purvesh Khatri, PhD, Inflammatix Inc. (Shareholder) Timothy Sweeney, MD, PHD, Inflammatix, Inc. (Employee, Shareholder)


2002 ◽  
Vol 361 (2) ◽  
pp. 203-209 ◽  
Author(s):  
Silvia GINÉS ◽  
Marta MARIÑO ◽  
Josefa MALLOL ◽  
Enric I. CANELA ◽  
Chikao MORIMOTO ◽  
...  

The extra-enzymic function of cell-surface adenosine deaminase (ADA), an enzyme mainly localized in the cytosol but also found on the cell surface of monocytes, B cells and T cells, has lately been the subject of numerous studies. Cell-surface ADA is able to transduce co-stimulatory signals in T cells via its interaction with CD26, an integral membrane protein that acts as ADA-binding protein. The aim of the present study was to explore whether ADA—CD26 interaction plays a role in the adhesion of lymphocyte cells to human epithelial cells. To meet this aim, different lymphocyte cell lines (Jurkat and CEM T) expressing endogenous, or overexpressing human, CD26 protein were tested in adhesion assays to monolayers of colon adenocarcinoma human epithelial cells, Caco-2, which express high levels of cell-surface ADA. Interestingly, the adhesion of Jurkat and CEM T cells to a monolayer of Caco-2 cells was greatly dependent on CD26. An increase by 50% in the cell-to-cell adhesion was found in cells containing higher levels of CD26. Incubation with an anti-CD26 antibody raised against the ADA-binding site or with exogenous ADA resulted in a significant reduction (50–70%) of T-cell adhesion to monolayers of epithelial cells. The role of ADA—CD26 interaction in the lymphocyte—epithelial cell adhesion appears to be mediated by CD26 molecules that are not interacting with endogenous ADA (ADA-free CD26), since SKW6.4 (B cells) that express more cell-surface ADA showed lower adhesion than T cells. Adhesion stimulated by CD26 and ADA is mediated by T cell lymphocyte function-associated antigen. A role for ADA—CD26 interaction in cell-to-cell adhesion was confirmed further in integrin activation assays. FACS analysis revealed a higher expression of activated integrins on T cell lines in the presence of increasing amounts of exogenous ADA. Taken together, these results suggest that the ADA—CD26 interaction on the cell surface has a role in lymphocyte—epithelial cell adhesion.


1995 ◽  
Vol 198 (8) ◽  
pp. 1711-1715 ◽  
Author(s):  
T A Heming ◽  
D L Traber ◽  
F Hinder ◽  
A Bidani

The role of plasma membrane V-ATPase activity in the regulation of cytosolic pH (pHi) was determined for resident alveolar and peritoneal macrophages (m theta) from sheep. Cytosolic pH was measured using 2',7'-biscarboxyethyl-5,6-carboxyfluorescein (BCECF). The baseline pHi of both cell types was sensitive to the specific V-ATPase inhibitor bafilomycin A1. Bafilomycin A1 caused a significant (approximately 0.2 pH units) and rapid (within seconds) decline in baseline pHi. Further, bafilomycin A1 slowed the initial rate of pHi recovery (dpHi/dt) from intracellular acid loads. Amiloride had no effects on baseline pHi, but reduced dpHi/dt (acid-loaded pHi nadir < 6.8) by approximately 35%. Recovery of pHi was abolished by co-treatment of m theta with bafilomycin A1 and amiloride. These data indicate that plasma membrane V-ATPase activity is a major determinant of pHi regulation in resident alveolar and peritoneal m theta from sheep. Sheep m theta also appear to possess a Na+/H+ exchanger. However, Na+/H+ exchange either is inactive or can be effectively masked by V-ATPase-mediated H+ extrusion at physiological pHi values.


Author(s):  
Benjamin J. Moss ◽  
Stefan W. Ryter ◽  
Ivan O. Rosas

The pathogenesis of idiopathic pulmonary fibrosis (IPF) involves a complex interplay of cell types and signaling pathways. Recurrent alveolar epithelial cell (AEC) injury may occur in the context of predisposing factors (e.g., genetic, environmental, epigenetic, immunologic, and gerontologic), leading to metabolic dysfunction, senescence, aberrant epithelial cell activation, and dysregulated epithelial repair. The dysregulated epithelial cell interacts with mesenchymal, immune, and endothelial cells via multiple signaling mechanisms to trigger fibroblast and myofibroblast activation. Recent single-cell RNA sequencing studies of IPF lungs support the epithelial injury model. These studies have uncovered a novel type of AEC with characteristics of an aberrant basal cell, which may disrupt normal epithelial repair and propagate a profibrotic phenotype. Here, we review the pathogenesis of IPF in the context of novel bioinformatics tools as strategies to discover pathways of disease, cell-specific mechanisms, and cell-cell interactions that propagate the profibrotic niche. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


1984 ◽  
Vol 66 (1) ◽  
pp. 81-93
Author(s):  
F.V. Sepulveda ◽  
J.D. Pearson

We have studied the cell-to-cell passage of uridine nucleotides in two renal epithelial cell lines (LLC-PK1 and MDCK) and in porcine aortic endothelial cells (PAE). All three cell types incorporated tritiated uridine. After a 3 h incubation the radioactivity was predominantly in the form of acid-soluble compounds, mainly UTP. Prelabelled LLC-PK1 or MDCK cells were unable to transfer radioactivity to added adjacent, non-labelled cells, whereas PAE cells readily formed communicating intercellular junctions, as judged by autoradiographic analysis after a 3 h co-culture period. Cell-to-cell communication in either of the renal cell lines was not promoted by treatment with dibutyryl cyclic AMP and methylisobutylxanthine. Radioactivity incorporated into the acid-insoluble pool was not available for intercellular transfer, as assessed in experiments in which cells were prelabelled 24 h before co-culture.


Sign in / Sign up

Export Citation Format

Share Document