Active absorption of Na+ and Cl- across the gill epithelium of the shore crab Carcinus maenas: voltage-clamp and ion-flux studies

1996 ◽  
Vol 199 (7) ◽  
pp. 1545-1554 ◽  
Author(s):  
S Riestenpatt ◽  
H Onken ◽  
D Siebers

Mechanisms of active NaCl uptake across the posterior gills of the shore crab Carcinus maenas were examined using radiochemical and electrophysiological techniques. In order to measure short-circuit current (Isc), transepithelial conductance (Gte) and area-related unidirectional fluxes of Na+ and Cl-, single split gill lamellae (epithelium plus cuticle) of hyperregulating shore crabs were mounted in a modified Ussing chamber. The negative short-circuit current measured with haemolymph-like NaCl saline on both sides of the epithelium could be inhibited by application of basolateral ouabain (ouabain inhibitor constant KOua=56±10 µmol l-1), 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB; KNPPB=7.5±2.5 mmol l-1) or Cs+ (10 mmol l-1). From the apical side, Isc was nearly completely blocked by Cs+ (10 mmol l-1) or Ba2+ (15 µmol l-1), whereas apical addition of furosemide (1 mmol l-1) resulted in only a small current decrease. Cl- influxes were linearly related to negative Isc. The ratio between net influxes of Cl- and Na+ was found to be approximately 2:1. With a single membrane preparation, achieved by permeabilizing the basolateral membrane with amphotericin B, Cl- influxes which were driven by a concentration gradient were shown to depend on the presence of apical Na+ and K+. On the basis of these observations, we propose that active and electrogenic absorption of NaCl across the gill epithelium of hyperregulating shore crabs proceeds as in the thick ascending limb of Henle's loop in the mammalian nephron. Accordingly, branchial NaCl transport is mediated by apical K+ channels in cooperation with apical Na+/K+/2Cl- cotransporters and by the basolateral Na+/K+-ATPase and basolateral Cl- channels.

2002 ◽  
Vol 205 (18) ◽  
pp. 2765-2775 ◽  
Author(s):  
Dirk Weihrauch ◽  
Andreas Ziegler ◽  
Dietrich Siebers ◽  
David W. Towle

SUMMARYAlthough aquatic animals are generally believed to export nitrogenous waste by diffusion of NH3 or NH4+ across external epithelia, evidence for active ammonia excretion has been found in a number of species. In the euryhaline green shore crab Carcinus maenas, active excretion of ammonia across isolated gills is reduced by inhibitors of the Na+/K+-ATPase and vacuolar-type H+-ATPase. In addition, a functional dynamic microtubule network is necessary, since application of colchicine, taxol or thiabendazole leads to almost complete blockage of active and gradient-driven ammonia excretion. Actin filaments seem not to play a role in the excretory process. The NH4+-dependent short-circuit current and the conductance of the isolated cuticle were reduced in a dose-dependent manner by amiloride,a non-specific inhibitor of the Na+/H+ exchanger and Na+ channels. Combined with an analysis of gill morphology, the strong intracellular but weak apical abundance of V-type H+-ATPase and the fact that ammonia flux rates are equal under buffered and unbuffered experimental conditions, our observations suggest a hypothetical model of transepithelial ammonia movement that features active uptake across the basolateral membrane, sequestration in acidified vesicles, vesicle transport via microtubules and exocytosis at the apical membrane.


2002 ◽  
Vol 205 (4) ◽  
pp. 523-531 ◽  
Author(s):  
Horst Onken ◽  
Sven Riestenpatt

SUMMARYSplit gill lamellae and gill cuticles of shore crabs (Carcinus maenas) adapted to 10 ‰ salinity were mounted in a modified Ussing-type chamber. With NaCl saline on both sides, split gill lamellae generated a short-circuit current (Isc) of –301±16 μA cm–2 at a conductance (Gte) of 40±2 mS cm–2. The net influxes of Na+ and Cl– were 8.3±2.6 and 18.2±2.7 μmol cm–2 h–1, respectively. External amiloride (100 μmol l–1) reduced Gte to approximately 50 % of the original value at unchanged Isc; Cl– fluxes remained unaffected, whereas Na+ fluxes were markedly reduced by 70–80 %. The Isc in the presence of external amiloride was almost completely inhibited by internal ouabain. At a clamp voltage of 50 mV (outside-positive), a positive current was measured at unchanged Gte. Under these conditions, amiloride reduced the current and conductance at half-maximal concentrations of 3.6 and 2.0 μmol l–1, respectively. At outside-positive voltages, but not under short-circuit conditions, external amiloride induced Lorentzian components in the power density spectra. The amiloride-dependent changes in the corner frequency (linear) and of the low-frequency plateau (‘bell-shaped’) were as expected for channel blockade by amiloride with pseudo-first-order kinetics. With an outside-positive clamp voltage of 50 mV across isolated cuticles, a positive cuticular current (Icut) of 25 188±3791 μA cm–2 and a cuticular conductance (Gcut) of 547±76 mS cm–2 were measured. External amiloride reduced Icut and Gcut at half-maximal concentrations of 0.7 and 0.6 μmol l–1, respectively. Amiloride-induced current-noise analysis gave similar results to those observed with split gill lamellae. Ion-substitution experiments with isolated cuticles further support inhibition by external amiloride of the cuticular Na+ conductance of shore crab gills and not amiloride-sensitive transporters (Na+ channels or Na+/H+ antiports) in the apical membrane.


2001 ◽  
Vol 281 (2) ◽  
pp. C633-C648 ◽  
Author(s):  
Sasha Blaug ◽  
Kevin Hybiske ◽  
Jonathan Cohn ◽  
Gary L. Firestone ◽  
Terry E. Machen ◽  
...  

Mammary epithelial 31EG4 cells (MEC) were grown as monolayers on filters to analyze the apical membrane mechanisms that help mediate ion and fluid transport across the epithelium. RT-PCR showed the presence of cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial Na+ channel (ENaC) message, and immunomicroscopy showed apical membrane staining for both proteins. CFTR was also localized to the apical membrane of native human mammary duct epithelium. In control conditions, mean values of transepithelial potential (apical-side negative) and resistance ( R T) are −5.9 mV and 829 Ω · cm2, respectively. The apical membrane potential ( V A) is −40.7 mV, and the mean ratio of apical to basolateral membrane resistance ( R A/ R B) is 2.8. Apical amiloride hyperpolarized V A by 19.7 mV and tripled R A/ R B. A cAMP-elevating cocktail depolarized V A by 17.6 mV, decreased R A/ R B by 60%, increased short-circuit current by 6 μA/cm2, decreased R T by 155 Ω · cm2, and largely eliminated responses to amiloride. Whole cell patch-clamp measurements demonstrated amiloride-inhibited Na+ currents [linear current-voltage ( I-V) relation] and forskolin-stimulated Cl−currents (linear I-V relation). A capacitance probe method showed that in the control state, MEC monolayers either absorbed or secreted fluid (2–4 μl · cm−2 · h−1). Fluid secretion was stimulated either by activating CFTR (cAMP) or blocking ENaC (amiloride). These data plus equivalent circuit analysis showed that 1) fluid absorption across MEC is mediated by Na+ transport via apical membrane ENaC, and fluid secretion is mediated, in part, by Cl− transport via apical CFTR; 2) in both cases, appropriate counterions move through tight junctions to maintain electroneutrality; and 3) interactions among CFTR, ENaC, and tight junctions allow MEC to either absorb or secrete fluid and, in situ, may help control luminal [Na+] and [Cl−].


1990 ◽  
Vol 259 (2) ◽  
pp. C215-C223 ◽  
Author(s):  
O. A. Candia

Forskolin (and other Cl- secretagogues) does not affect the very small Na(+)-originated short-circuit current (Isc) across frog corneal epithelium bathed in Cl- free solutions. However, forskolin in combination with increased PCO2 bubbling of the solutions (5-20% CO2) stimulated Isc proportionally to PCO2 to a maximum of approximately 8 microA/cm2. This current could be eliminated and reinstated by sequentially changing the gas composition of the bubbling to 100% air and 20% CO2-80% air. The same effects were observed when PCO2 changes were limited to the apical-side solution. Stroma-to-tear HCO3- movement was deemed unlikely, since the increase in Isc was observed with a HCO3(-)-free solution on the stromal side and CO2 gassing limited to the tear side. From the effects of ouabain and tryptamine, at least 80% of the Isc across the basolateral membrane can be accounted for by the Na+ pump current plus K+ movement from cell to bath. Methazolamide also inhibited Isc. Current across the apical membrane cannot be attributed to an electronegative Na(+)-HCO3- symport given the insensitivity of Isc to a disulfonic stilbene and the fact that stroma-to-tear Na+ fluxes did not increase on stimulation of Isc. The tear-to-stroma Na+ flux also remained unaltered, negating an increased apical bath-to-cell Na+ flow. The forskolin-20% CO2 manipulation produced a depolarization of the intracellular potential, a reduction in the apical-to-basolateral resistance ratio, and a decrease in transepithelial resistance.(ABSTRACT TRUNCATED AT 250 WORDS)


1988 ◽  
Vol 254 (6) ◽  
pp. C816-C821 ◽  
Author(s):  
W. Van Driessche ◽  
D. Erlij

We incubated toad urinary bladders with Na+-free, isotonic K+ solutions on the apical side and increased the cationic conductance of the apical membrane with nystatin (150 U/ml). Under these conditions, the short-circuit current is mostly carried by K+ flowing from mucosa to serosa. Impedance measurements showed that in nystatin-treated preparations, the electrical behavior of the tissue is dominated by the basolateral membrane properties. Oxytocin (0.1 U/ml) produced an increase of the current and the conductance of the basolateral membrane. Both the resting and the oxytocin-stimulated current were rapidly and reversibly blocked by serosal Ba2+. Addition of the adenosine 3',5'-cyclic monophosphate (cAMP) analogue [8-(4-chloropheylthio)-cAMP] to the basolateral solution mimicked the effects of oxytocin. These results show that oxytocin and cAMP stimulate a potassium conductance in the basolateral membrane and that the stimulation is not related to an increase in sodium entry through the apical membrane. Addition of ouabain (10(-3) M) to the serosal solution did not modify the stimulation by oxytocin, indicating that the activated pathway is not linked to the rate of turnover of the Na+ pump.


1997 ◽  
Vol 200 (23) ◽  
pp. 3055-3065
Author(s):  
T Cox

The skin of the bullfrog Rana catesbeiana tadpole contains an apical non-selective cation channel that is activated by amiloride. This is in contrast to the adult skin, which has a highly Na+-selective channel that is blocked by amiloride. The purpose of the present study was to characterize further the nature of the tadpole channel using amiloride and its analogs benzamil, dimethyl amiloride (DMA), 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) and methyl isobutyl amiloride (MIBA). Tadpole skins were mounted in modified Ussing chambers with Ca2+-free KCl or NaCl Ringer on the apical side and standard NaCl Ringer (containing 2 mmol l-1 Ca2+) on the basolateral side. Drugs were added to the apical solution at concentrations between 0.1 and 1000 micromol l-1. Amiloride caused the short-circuit current (Isc) to increase rapidly from near zero to a peak of approximately 30-50 microA and then to decline back towards zero over several seconds. The peak response was largest at 100 micromol l-1. The rate of decline was noticeably faster at the higher concentrations. Benzamil and DMA had similar time courses to amiloride, but with smaller effects on Isc. The largest peak responses occurred at 5-50 micromol l-1. EIPA and MIBA gave small responses at 1-10 micromol l-1 and, at higher concentrations (50-500 micromol l-1), the responses consisted of rapid, small increases in Isc followed by rapid decreases. The largest peak response occurred at 10 micromol l-1 for both drugs. After apical membrane resistance had been reduced by nystatin, addition of analogs to the apical solution caused no change in Isc or transepithelial resistance. This suggests that the decline in Isc after amiloride analog treatment was not due to increases in the resistance of the basolateral membrane. N-(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7) blocked stimulation by all of the analogs. These data are consistent with amiloride analogs acting as both activators and inhibitors of short-circuit current in tadpole skin and extend the list of ligands that activate these channels.


2002 ◽  
Vol 283 (4) ◽  
pp. F765-F770 ◽  
Author(s):  
Alan S. Segal ◽  
John P. Hayslett ◽  
Gary V. Desir

The natriuretic effect of Ca2+ channel blockers has been attributed to hemodynamic changes and to poorly defined direct tubular effects. To test the possibility that verapamil may inhibit Na+ reabsorption at the distal tubule, its effect on transepithelial Na+transport in aldosterone-stimulated A6 cells was determined. Cells were grown on permeable supports, and short-circuit current ( I sc) measured in an Ussing chamber was used as a surrogate marker for transepithelial Na+ transport. Application of 300 μM verapamil to the apical side inhibited I sc by 77% and was nearly as potent as 100 μM amiloride, which inhibited I sc by 87%. Verapamil-induced inhibition of I sc was accompanied by a significant increase in transepithelial resistance, suggesting blockade of an apical conductance. Its action on transepithelial Na+ transport does not appear to occur through inhibition of L-type Ca2+ channels, since I sc was unaffected by removal of extracellular Ca2+. Verapamil also does not appear to inhibit I sc by modulating intracellular Ca2+stores, since it fails to inhibit transepithelial Na+transport when added to the basolateral side. The effect on Na+ transport is specific for verapamil, since nifedipine, Ba2+, 4-aminopyridine, and charybdotoxin do not significantly affect I sc. A direct effect of verapamil on the epithelial Na+ channel (ENaC) was tested using oocytes injected with the α-, β-, and γ-subunits. We conclude that verapamil inhibits transepithelial Na+transport in A6 cells by blocking ENaC and that the natriuresis observed with administration of verapamil may be due in part to its action on ENaC.


1990 ◽  
Vol 259 (5) ◽  
pp. R936-R942
Author(s):  
T. C. Cox ◽  
R. E. Woods

A new technique has been developed to correlate K loss from cells (JK) across the basolateral membrane into a K-free ouabain Ringer solution and short-circuit current (Isc) for a model Na-transporting epithelium, the frog skin. Distinct differences were observed when the tissue was bathed in sulfate or chloride Ringer. In sulfate Ringer, K-free ouabain treatment caused both JK and Isc to decline in a nearly parallel fashion with time. JK-Isc was approximately 1 microA/cm2. In sulfate Ringer, isoproterenol caused parallel increases, whereas amiloride (apical side) caused parallel decreases in JK and Isc. In chloride Ringer, K-free ouabain treatment caused Isc to decline at a slightly faster rate than JK.JK-Isc was approximately 8 microA/cm2. Bumetanide decreased JK with very little effect on Isc. Barium caused small parallel changes in both Isc and JK. Amiloride decreased Isc with very little effect on JK. These experiments show that after ouabain treatment changes in JK from the cells across the basolateral membrane can largely account for changes in Isc. However, JK also occurs via neutral mechanisms and perhaps from cells not related to the transport pathway, demonstrating that there is not always a tight coupling of K loss at the basolateral membrane with Na entry across the apical membrane.


1992 ◽  
Vol 173 (1) ◽  
pp. 261-274 ◽  
Author(s):  
N Audsley ◽  
C McIntosh ◽  
J E Phillips

1. Schistocerca gregaria ion-transport peptide (Scg-ITP) was isolated from aqueous extracts of the corpus cardiacum by a four-step procedure, utilizing reverse-phase high-performance liquid chromatography for separation and stimulation of a Cl(-)-dependent short-circuit current (Isc) across locust ilea as the bioassay. 2. Scg-ITP has an unblocked N terminus and an apparent relative molecular mass of 7700. Thirty-one residues (of an estimated 65) were identified by sequence analysis. 3. Scg-ITP is structurally related to a crustacean family of neuropeptides which includes the crustacean hyperglycaemic hormones from the shore crab Carcinus maenas and the crayfish Orconectes limosus and moult-inhibiting hormone and vitellogenesis-inhibiting hormone from the lobster Homarus americanus. 4. Scg-ITP has no sequence homology with neuroparsins (Nps). Nps are the only other neuropeptides isolated to date that might regulate reabsorption in an insect hindgut (rectum).


1991 ◽  
Vol 261 (2) ◽  
pp. C332-C341 ◽  
Author(s):  
N. J. Willumsen ◽  
R. C. Boucher

Cystic fibrosis (CF) airway epithelia exhibit raised transepithelial Na+ transport rates, as determined by open-circuit isotope fluxes and estimates of the amiloride-sensitive equivalent short-circuit current (Ieq). To study the contribution of apical and basolateral membrane paths to raised Na+ transport in CF, CF nasal epithelial cultures were studied with double-barreled Na(+)-selective microelectrodes and the Ussing chamber technique. Intracellular Na+ activity (acNa) was 24.1 +/- 1.5 mM (n = 36), a value similar to acNa of normal nasal epithelial cells. Reduction of luminal [Na+] to 3 mM abolished Ieq and reduced acNa. Amiloride (10(-4) M) abolished Ieq but increased acNa from 20 +/- 2 to 36 +/- 7 mM (n = 10). Amiloride-induced increase in acNa was not affected by serosal [Na+] reduction but was blocked by preexposure to reduced luminal [Na+]. Amphotericin B increased Ieq during amiloride exposure, indicating that amiloride did not inhibit NA(+)-K(+)-ATPase. Ouabain abolished Ieq and slowly raised acNa. Reduction of serosal [Na+] led to a decrease in acNa that was blocked by bumetanide. It is concluded that 1) CF airway epithelia exhibit an increased apical membrane Na+ permeability, 2) acNa is regulated to a normal level in CF cells despite increased transcellular Na+ fluxes, 3) the abnormal increase in acNa in response to amiloride is dependent on luminal Na+, 4) Na+ is transported across the basolateral membrane by a bumetanide-sensitive cotransport mechanism, and 5) ouabain inhibits the basolateral Na(+)-K(+)-ATPase, causing slow dissipation of the chemical and electrical gradients across the cell membranes.


Sign in / Sign up

Export Citation Format

Share Document