Concurrent numerical implementation of vibration correlation technique for fast buckling load prediction of cylindrical shells under combined loading conditions

Author(s):  
Kuo Tian ◽  
Lei Huang ◽  
Musen Yang ◽  
Yan Chen ◽  
Peng Hao ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Kaspars Kalnins ◽  
Mariano A. Arbelo ◽  
Olgerts Ozolins ◽  
Eduards Skukis ◽  
Saullo G. P. Castro ◽  
...  

Nondestructive methods, to calculate the buckling load of imperfection sensitive thin-walled structures, such as large-scale aerospace structures, are one of the most important techniques for the evaluation of new structures and validation of numerical models. The vibration correlation technique (VCT) allows determining the buckling load for several types of structures without reaching the instability point, but this technique is still under development for thin-walled plates and shells. This paper presents and discusses an experimental verification of a novel approach using vibration correlation technique for the prediction of realistic buckling loads of unstiffened cylindrical shells loaded under axial compression. Four different test structures were manufactured and loaded up to buckling: two composite laminated cylindrical shells and two stainless steel cylinders. In order to characterize a relationship with the applied load, the first natural frequency of vibration and mode shape is measured during testing using a 3D laser scanner. The proposed vibration correlation technique allows one to predict the experimental buckling load with a very good approximation without actually reaching the instability point. Additional experimental tests and numerical models are currently under development to further validate the proposed approach for composite and metallic conical structures.


2017 ◽  
Vol 172 ◽  
pp. 1023-1030 ◽  
Author(s):  
Eduards Skukis ◽  
Olgerts Ozolins ◽  
Kaspars Kalnins ◽  
Mariano A. Arbelo

2015 ◽  
Vol 94 ◽  
pp. 273-279 ◽  
Author(s):  
Mariano A. Arbelo ◽  
Kaspars Kalnins ◽  
Olgerts Ozolins ◽  
Eduards Skukis ◽  
Saullo G.P. Castro ◽  
...  

2014 ◽  
Vol 79 ◽  
pp. 119-128 ◽  
Author(s):  
Mariano A. Arbelo ◽  
Sérgio F.M. de Almeida ◽  
Maurício V. Donadon ◽  
Sandro R. Rett ◽  
Richard Degenhardt ◽  
...  

1974 ◽  
Vol 96 (4) ◽  
pp. 1322-1327
Author(s):  
Shun Cheng ◽  
C. K. Chang

The buckling problem of circular cylindrical shells under axial compression, external pressure, and torsion is investigated using a displacement function φ. A governing differential equation for the stability of thin cylindrical shells under combined loading of axial compression, external pressure, and torsion is derived. A method for the solutions of this equation is also presented. The advantage in using the present equation over the customary three differential equations for displacements is that only one trial solution is needed in solving the buckling problems as shown in the paper. Four possible combinations of boundary conditions for a simply supported edge are treated. The case of a cylinder under axial compression is carried out in detail. For two types of simple supported boundary conditions, SS1 and SS2, the minimum critical axial buckling stress is found to be 43.5 percent of the well-known classical value Eh/R3(1−ν2) against the 50 percent of the classical value presently known.


Author(s):  
Remy Her ◽  
Jacques Renard ◽  
Vincent Gaffard ◽  
Yves Favry ◽  
Paul Wiet

Composite repair systems are used for many years to restore locally the pipe strength where it has been affected by damage such as wall thickness reduction due to corrosion, dent, lamination or cracks. Composite repair systems are commonly qualified, designed and installed according to ASME PCC2 code or ISO 24817 standard requirements. In both of these codes, the Maximum Allowable Working Pressure (MAWP) of the damaged section must be determined to design the composite repair. To do so, codes such as ASME B31G for example for corrosion, are used. The composite repair systems is designed to “bridge the gap” between the MAWP of the damaged pipe and the original design pressure. The main weakness of available approaches is their applicability to combined loading conditions and various types of defects. The objective of this work is to set-up a “universal” methodology to design the composite repair by finite element calculations with directly taking into consideration the loading conditions and the influence of the defect on pipe strength (whatever its geometry and type). First a program of mechanical tests is defined to allow determining all the composite properties necessary to run the finite elements calculations. It consists in compression and tensile tests in various directions to account for the composite anisotropy and of Arcan tests to determine steel to composite interface behaviors in tension and shear. In parallel, a full scale burst test is performed on a repaired pipe section where a local wall thinning is previously machined. For this test, the composite repair was designed according to ISO 24817. Then, a finite element model integrating damaged pipe and composite repair system is built. It allowed simulating the test, comparing the results with experiments and validating damage models implemented to capture the various possible types of failures. In addition, sensitivity analysis considering composite properties variations evidenced by experiments are run. The composite behavior considered in this study is not time dependent. No degradation of the composite material strength due to ageing is taking into account. The roadmap for the next steps of this work is to clearly identify the ageing mechanisms, to perform tests in relevant conditions and to introduce ageing effects in the design process (and in particular in the composite constitutive laws).


Sign in / Sign up

Export Citation Format

Share Document