Dynamic linkage between the north pacific and the tropical pacific: Atmosphere-ocean coupling

2013 ◽  
Vol 30 (2) ◽  
pp. 306-314
Author(s):  
Chun Li ◽  
Lixin Wu
2003 ◽  
Vol 16 (8) ◽  
pp. 1101-1120 ◽  
Author(s):  
L. Wu ◽  
Z. Liu ◽  
R. Gallimore ◽  
R. Jacob ◽  
D. Lee ◽  
...  

2013 ◽  
Vol 28 (6) ◽  
pp. 1304-1321 ◽  
Author(s):  
Seung-Eon Lee ◽  
Kyong-Hwan Seo

Abstract Forecasting year-to-year variations in East Asian summer monsoon (EASM) precipitation is one of the most challenging tasks in climate prediction because the predictors are not sufficiently well known and the forecast skill of the numerical models is poor. In this paper, a statistical forecast model for changma (the Korean portion of the EASM system) precipitation is proposed that was constructed with three physically based predictors. A forward-stepwise regression was used to select the predictors that included sea surface temperature (SST) anomalies over the North Pacific, the North Atlantic, and the tropical Pacific Ocean. Seasonal predictions with this model showed high forecasting capabilities that had a Gerrity skill score of ~0.82. The dynamical processes associated with the predictors were examined prior to their use in the prediction scheme. All predictors tended to induce an anticyclonic anomaly to the east or southeast of Japan, which was responsible for transporting a large amount of moisture to the southern Korean Peninsula. The predictor in the North Pacific formed an SST front to the east of Japan during the summertime, which maintained a lower-tropospheric baroclinicity. The North Atlantic SST anomaly induced downstream wave propagation in the upper troposphere, developing anticyclonic activity east of Japan. Forcing from the tropical Pacific SST anomaly triggered a cyclonic anomaly over the South China Sea, which was maintained by atmosphere–ocean interactions and induced an anticyclonic anomaly via northward Rossby wave propagation. Overall, the model used for forecasting changma precipitation performed well (R = 0.85) and correctly predicted information for 16 out of 19 yr of observational data.


2012 ◽  
Vol 117 (D15) ◽  
pp. n/a-n/a ◽  
Author(s):  
Sae-Rim Yeo ◽  
Kwang-Yul Kim ◽  
Sang-Wook Yeh ◽  
WonMoo Kim

2018 ◽  
Author(s):  
Stéphane Vannitsem ◽  
Pierre Ekelmans

Abstract. The causal dependences between the dynamics of three different coupled ocean-atmosphere basins, The North Atlantic, the North Pacific and the Tropical Pacific region, NINO3.4, have been explored using data from three reanalyses datasets, namely the ORA-20C, the ORAS4 and the ERA-20C. The approach is based on the Convergent Cross Mapping (CCM) developed by Sugihara et al. (2012) that allows for evaluating the dependences between observables beyond the classical teleconnection patterns based on correlations. The use of CCM on these data mostly reveals that (i) the Tropical Pacific (NINO3.4 region) only influences the dynamics of the North Atlantic region through its annual climatological cycle; (ii) the atmosphere over the North Pacific is dynamically forcing the North Atlantic on a monthly basis; (iii) on longer time scales (interannual), the dynamics of the North Pacific and the North Atlantic are influencing each other through the ocean dynamics, suggesting a connection through the thermohaline circulation. These findings shed a new light on the coupling between these three different important regions of the globe. In particular they call for a deep reassessment of the way teleconnections are interpreted, and for a more rigorous way to evaluate causality and dependences between the different components of the climate system.


2018 ◽  
Vol 9 (3) ◽  
pp. 1063-1083 ◽  
Author(s):  
Stéphane Vannitsem ◽  
Pierre Ekelmans

Abstract. The causal dependences (in a dynamical sense) between the dynamics of three different coupled ocean–atmosphere basins, the North Atlantic, the North Pacific and the tropical Pacific region (Nino3.4), have been explored using data from three reanalysis datasets, namely ORA-20C, ORAS4 and ERA-20C. The approach is based on convergent cross mapping (CCM) developed by Sugihara et al. (2012) that allows for evaluating the dependences between variables beyond the classical teleconnection patterns based on correlations. The use of CCM on these data mostly reveals that (i) the tropical Pacific (Nino3.4 region) only influences the dynamics of the North Atlantic region through its annual climatological cycle; (ii) the atmosphere over the North Pacific is dynamically forcing the North Atlantic on a monthly basis; (iii) on longer timescales (interannual), the dynamics of the North Pacific and the North Atlantic are influencing each other through the ocean dynamics, suggesting a connection through the thermohaline circulation. These findings shed a new light on the coupling between these three different regions of the globe. In particular, they call for a deep reassessment of the way teleconnections are interpreted and for a more rigorous way to evaluate dynamical dependences between the different components of the climate system.


2021 ◽  
pp. 1-46
Author(s):  
Xiaohe An ◽  
Bo Wu ◽  
Tianjun Zhou ◽  
Bo Liu

AbstractInterdecadal Pacific Oscillation (IPO) and Atlantic Multidecadal Oscillation (AMO), two leading modes of decadal climate variability, are not independent. It was proposed that ENSO-like sea surface temperature (SST) variations play a central role in the Pacific responses to the AMO forcing. However, observational analyses indicate that the AMO-related SST anomalies in the tropical Pacific are far weaker than those in the extratropical North Pacific. Here, we show that SST in the North Pacific is tied to the AMO forcing by convective heating associated with precipitation over the tropical Pacific, instead of by SST there, based on an ensemble of pacemaker experiments with North Atlantic SST restored to the observation in a coupled general circulation model. The AMO modulates precipitation over the equatorial and tropical southwestern Pacific through exciting an anomalous zonal circulation and an interhemispheric asymmetry of net moist static energy input into the atmosphere. The convective heating associated with the precipitation anomalies drive SST variations in the North Pacific through a teleconnection, but remarkably weaken the ENSO-like SST anomalies through a thermocline damping effect. This study has implications that the IPO is a combined mode generated by both AMO forcing and local air-sea interactions, but the IPO-related global-warming acceleration/slowdown is independent of the AMO.


2020 ◽  
Author(s):  
Meiyi Hou ◽  
Xiefei Zhi

<p>Different types of El Niño-Southern Oscillation (ENSO) predictions are sensitive to the initial errors in different key areas in the Pacific Ocean. And it is known that the prediction can be improved by removing the initial errors by using assimilation methods. However yet, few studies have quantified to what extent can different types of ENSO predictions be improved by assimilating variable in different key areas. In Hou et.al (2019), 4 types of ocean temperature initial error patterns were classified for two types of El Niño prediction. It was indicated that initial errors in the north Pacific, covering the Victoria Mode region, along with south Pacific, covering the South Pacific Meridional Mode region, and subsurface layer of western equatorial Pacific have strong influence on the ENSO prediction. Following the data analysis method and the initial error patterns they proposed, we assimilate ocean temperature in these three key areas of Pacific Ocean by using CMIP5 pi-control dataset and particle filter method. Most EP- and CP-El Niño predictions in December are improved after assimilating the ocean temperature in southeast Pacific, north Pacific and western equatorial Pacific from January to March. Specially, for the prediction ensemble which contains EP(CP)-type-1 initial errors, the EP(CP)-El Niño prediction skill raises the most after assimilating the Tropical Pacific temperature, comparing with the result of assimilating the south Pacific and north Pacific. As for the prediction ensemble which contains EP-type-2 initial errors, which present similar pattern to EP-type-1 but with opposite sign, the EP-El Niño prediction skill increases the most by assimilating the north Pacific temperature. The results verify that the initial errors in the north Pacific exert contrary influences on the ENSO prediction with that in the southeast Pacific and western tropical Pacific. In addition, the initial errors in the north Pacific is more of concern for the SST prediction in the central tropical Pacific in December, while those in the southeast Pacific and tropical western Pacific is more related to the SST prediction in the central-eastern tropical Pacific. In conclusion, to better predict the types of El Niño, attentions should be paid to the initial ocean temperature accuracy not only in the tropical Pacific but also in the north and south Pacific. </p><div> <div> <div> </div> </div> <div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document