Evaluating the effect of tropical and extratropical Pacific initial errors on two types of El Niño prediction using particle filter approach

Author(s):  
Meiyi Hou ◽  
Xiefei Zhi

<p>Different types of El Niño-Southern Oscillation (ENSO) predictions are sensitive to the initial errors in different key areas in the Pacific Ocean. And it is known that the prediction can be improved by removing the initial errors by using assimilation methods. However yet, few studies have quantified to what extent can different types of ENSO predictions be improved by assimilating variable in different key areas. In Hou et.al (2019), 4 types of ocean temperature initial error patterns were classified for two types of El Niño prediction. It was indicated that initial errors in the north Pacific, covering the Victoria Mode region, along with south Pacific, covering the South Pacific Meridional Mode region, and subsurface layer of western equatorial Pacific have strong influence on the ENSO prediction. Following the data analysis method and the initial error patterns they proposed, we assimilate ocean temperature in these three key areas of Pacific Ocean by using CMIP5 pi-control dataset and particle filter method. Most EP- and CP-El Niño predictions in December are improved after assimilating the ocean temperature in southeast Pacific, north Pacific and western equatorial Pacific from January to March. Specially, for the prediction ensemble which contains EP(CP)-type-1 initial errors, the EP(CP)-El Niño prediction skill raises the most after assimilating the Tropical Pacific temperature, comparing with the result of assimilating the south Pacific and north Pacific. As for the prediction ensemble which contains EP-type-2 initial errors, which present similar pattern to EP-type-1 but with opposite sign, the EP-El Niño prediction skill increases the most by assimilating the north Pacific temperature. The results verify that the initial errors in the north Pacific exert contrary influences on the ENSO prediction with that in the southeast Pacific and western tropical Pacific. In addition, the initial errors in the north Pacific is more of concern for the SST prediction in the central tropical Pacific in December, while those in the southeast Pacific and tropical western Pacific is more related to the SST prediction in the central-eastern tropical Pacific. In conclusion, to better predict the types of El Niño, attentions should be paid to the initial ocean temperature accuracy not only in the tropical Pacific but also in the north and south Pacific. </p><div> <div> <div> </div> </div> <div> </div> </div>

2013 ◽  
Vol 10 (7) ◽  
pp. 12155-12216 ◽  
Author(s):  
M. Ishii ◽  
R. A. Feely ◽  
K. B. Rodgers ◽  
G.-H. Park ◽  
R. Wanninkhof ◽  
...  

Abstract. Air-sea CO2 fluxes over the Pacific Ocean are known to be characterized by coherent large-scale structures that reflect not only ocean subduction and upwelling patterns, but also the combined effects of wind-driven gas exchange and biology. On the largest scales, a large net CO2 influx into the extra-tropics is associated with a robust seasonal cycle, and a large net CO2 efflux from the tropics is associated with substantial inter-annual variability. In this work, we have synthesized estimates of the net air-sea CO2 flux from a variety of products drawing upon a variety of approaches in three sub-basins of the Pacific Ocean, i.e., the North Pacific extra-tropics (18° N–66° N), the tropical Pacific (18° S–18° N), and the South Pacific extra-tropics (44.5° S–18° S). These approaches include those based on the measurements of CO2 partial pressure in surface seawater (pCO2sw), inversions of ocean interior CO2 data, forward ocean biogeochemistry models embedded in the ocean general circulation models (OBGCMs), a model with assimilation of pCO2sw data, and inversions of atmospheric CO2 measurements. Long-term means, inter-annual variations and mean seasonal variations of the regionally-integrated fluxes were compared in each of the sub-basins over the last two decades, spanning the period from 1990 through 2009. A simple average of the long-term mean fluxes obtained with surface water pCO2 diagnostics and those obtained with ocean interior CO2 inversions are –0.47 ± 0.13 Pg C yr–1 in the North Pacific extra-tropics, +0.44 ± 0.14 Pg C yr–1 in the tropical Pacific, and –0.37 ± 0.08 Pg C yr–1 in the South Pacific extra-tropics, where positive fluxes are into the atmosphere. This suggests that approximately half of the CO2 taken up over the North and South Pacific extra-tropics is released back to the atmosphere from the tropical Pacific. These estimates of the regional fluxes are also supported by the estimates from OBGCMs after adding the riverine CO2 flux, i.e., –0.49 ± 0.02 Pg C yr–1 in the North Pacific extra-tropics, +0.41 ± 0.05 Pg C yr–1 in the tropical Pacific, and –0.39 ± 0.11 Pg C yr–1 in the South Pacific extra-tropics. The estimates from the atmospheric CO2 inversions show large variations amongst different inversion systems, but their median fluxes are consistent with the estimates from climatological pCO2sw data and pCO2sw diagnostics. In the South Pacific extra-tropics, where CO2 variations in the surface and ocean interior are severely under-sampled, the difference in the air-sea CO2 flux estimates between the diagnostic models and ocean interior CO2 inversions is larger (0.18 Pg C yr–1). The range of estimates from forward OBGCMs is also large (−0.19 to −0.72 Pg C yr–1). Regarding inter-annual variability of air-sea CO2 fluxes, positive and negative anomalies are evident in the tropical Pacific during the cold and warm events of the El Niño Southern Oscillation in the estimates from pCO2sw diagnostic models and from OBGCMs. They are consistent in phase with the Southern Oscillation Index, but the peak-to-peak amplitudes tend to be higher in OBGCMs (0.40 ± 0.09 Pg C yr–1) than in the diagnostic models (0.27 ± 0.07 Pg C yr–1).


2003 ◽  
Vol 16 (8) ◽  
pp. 1101-1120 ◽  
Author(s):  
L. Wu ◽  
Z. Liu ◽  
R. Gallimore ◽  
R. Jacob ◽  
D. Lee ◽  
...  

2013 ◽  
Vol 28 (6) ◽  
pp. 1304-1321 ◽  
Author(s):  
Seung-Eon Lee ◽  
Kyong-Hwan Seo

Abstract Forecasting year-to-year variations in East Asian summer monsoon (EASM) precipitation is one of the most challenging tasks in climate prediction because the predictors are not sufficiently well known and the forecast skill of the numerical models is poor. In this paper, a statistical forecast model for changma (the Korean portion of the EASM system) precipitation is proposed that was constructed with three physically based predictors. A forward-stepwise regression was used to select the predictors that included sea surface temperature (SST) anomalies over the North Pacific, the North Atlantic, and the tropical Pacific Ocean. Seasonal predictions with this model showed high forecasting capabilities that had a Gerrity skill score of ~0.82. The dynamical processes associated with the predictors were examined prior to their use in the prediction scheme. All predictors tended to induce an anticyclonic anomaly to the east or southeast of Japan, which was responsible for transporting a large amount of moisture to the southern Korean Peninsula. The predictor in the North Pacific formed an SST front to the east of Japan during the summertime, which maintained a lower-tropospheric baroclinicity. The North Atlantic SST anomaly induced downstream wave propagation in the upper troposphere, developing anticyclonic activity east of Japan. Forcing from the tropical Pacific SST anomaly triggered a cyclonic anomaly over the South China Sea, which was maintained by atmosphere–ocean interactions and induced an anticyclonic anomaly via northward Rossby wave propagation. Overall, the model used for forecasting changma precipitation performed well (R = 0.85) and correctly predicted information for 16 out of 19 yr of observational data.


2012 ◽  
Vol 117 (D15) ◽  
pp. n/a-n/a ◽  
Author(s):  
Sae-Rim Yeo ◽  
Kwang-Yul Kim ◽  
Sang-Wook Yeh ◽  
WonMoo Kim

2018 ◽  
Author(s):  
Stéphane Vannitsem ◽  
Pierre Ekelmans

Abstract. The causal dependences between the dynamics of three different coupled ocean-atmosphere basins, The North Atlantic, the North Pacific and the Tropical Pacific region, NINO3.4, have been explored using data from three reanalyses datasets, namely the ORA-20C, the ORAS4 and the ERA-20C. The approach is based on the Convergent Cross Mapping (CCM) developed by Sugihara et al. (2012) that allows for evaluating the dependences between observables beyond the classical teleconnection patterns based on correlations. The use of CCM on these data mostly reveals that (i) the Tropical Pacific (NINO3.4 region) only influences the dynamics of the North Atlantic region through its annual climatological cycle; (ii) the atmosphere over the North Pacific is dynamically forcing the North Atlantic on a monthly basis; (iii) on longer time scales (interannual), the dynamics of the North Pacific and the North Atlantic are influencing each other through the ocean dynamics, suggesting a connection through the thermohaline circulation. These findings shed a new light on the coupling between these three different important regions of the globe. In particular they call for a deep reassessment of the way teleconnections are interpreted, and for a more rigorous way to evaluate causality and dependences between the different components of the climate system.


2014 ◽  
Vol 11 (3) ◽  
pp. 709-734 ◽  
Author(s):  
M. Ishii ◽  
R. A. Feely ◽  
K. B. Rodgers ◽  
G.-H. Park ◽  
R. Wanninkhof ◽  
...  

Abstract. Air–sea CO2 fluxes over the Pacific Ocean are known to be characterized by coherent large-scale structures that reflect not only ocean subduction and upwelling patterns, but also the combined effects of wind-driven gas exchange and biology. On the largest scales, a large net CO2 influx into the extratropics is associated with a robust seasonal cycle, and a large net CO2 efflux from the tropics is associated with substantial interannual variability. In this work, we have synthesized estimates of the net air–sea CO2 flux from a variety of products, drawing upon a variety of approaches in three sub-basins of the Pacific Ocean, i.e., the North Pacific extratropics (18–66° N), the tropical Pacific (18° S–18° N), and the South Pacific extratropics (44.5–18° S). These approaches include those based on the measurements of CO2 partial pressure in surface seawater (pCO2sw), inversions of ocean-interior CO2 data, forward ocean biogeochemistry models embedded in the ocean general circulation models (OBGCMs), a model with assimilation of pCO2sw data, and inversions of atmospheric CO2 measurements. Long-term means, interannual variations and mean seasonal variations of the regionally integrated fluxes were compared in each of the sub-basins over the last two decades, spanning the period from 1990 through 2009. A simple average of the long-term mean fluxes obtained with surface water pCO2 diagnostics and those obtained with ocean-interior CO2 inversions are −0.47 ± 0.13 Pg C yr−1 in the North Pacific extratropics, +0.44 ± 0.14 Pg C yr−1 in the tropical Pacific, and −0.37 ± 0.08 Pg C yr−1 in the South Pacific extratropics, where positive fluxes are into the atmosphere. This suggests that approximately half of the CO2 taken up over the North and South Pacific extratropics is released back to the atmosphere from the tropical Pacific. These estimates of the regional fluxes are also supported by the estimates from OBGCMs after adding the riverine CO2 flux, i.e., −0.49 ± 0.02 Pg C yr−1 in the North Pacific extratropics, +0.41 ± 0.05 Pg C yr−1 in the tropical Pacific, and −0.39 ± 0.11 Pg C yr−1 in the South Pacific extratropics. The estimates from the atmospheric CO2 inversions show large variations amongst different inversion systems, but their median fluxes are consistent with the estimates from climatological pCO2sw data and pCO2sw diagnostics. In the South Pacific extratropics, where CO2 variations in the surface and ocean interior are severely undersampled, the difference in the air–sea CO2 flux estimates between the diagnostic models and ocean-interior CO2 inversions is larger (0.18 Pg C yr−1). The range of estimates from forward OBGCMs is also large (−0.19 to −0.72 Pg C yr−1). Regarding interannual variability of air–sea CO2 fluxes, positive and negative anomalies are evident in the tropical Pacific during the cold and warm events of the El Niño–Southern Oscillation in the estimates from pCO2sw diagnostic models and from OBGCMs. They are consistent in phase with the Southern Oscillation Index, but the peak-to-peak amplitudes tend to be higher in OBGCMs (0.40 ± 0.09 Pg C yr−1) than in the diagnostic models (0.27 ± 0.07 Pg C yr−1).


2018 ◽  
Vol 9 (3) ◽  
pp. 1063-1083 ◽  
Author(s):  
Stéphane Vannitsem ◽  
Pierre Ekelmans

Abstract. The causal dependences (in a dynamical sense) between the dynamics of three different coupled ocean–atmosphere basins, the North Atlantic, the North Pacific and the tropical Pacific region (Nino3.4), have been explored using data from three reanalysis datasets, namely ORA-20C, ORAS4 and ERA-20C. The approach is based on convergent cross mapping (CCM) developed by Sugihara et al. (2012) that allows for evaluating the dependences between variables beyond the classical teleconnection patterns based on correlations. The use of CCM on these data mostly reveals that (i) the tropical Pacific (Nino3.4 region) only influences the dynamics of the North Atlantic region through its annual climatological cycle; (ii) the atmosphere over the North Pacific is dynamically forcing the North Atlantic on a monthly basis; (iii) on longer timescales (interannual), the dynamics of the North Pacific and the North Atlantic are influencing each other through the ocean dynamics, suggesting a connection through the thermohaline circulation. These findings shed a new light on the coupling between these three different regions of the globe. In particular, they call for a deep reassessment of the way teleconnections are interpreted and for a more rigorous way to evaluate dynamical dependences between the different components of the climate system.


2008 ◽  
Vol 21 (18) ◽  
pp. 4691-4709 ◽  
Author(s):  
Daniela Matei ◽  
Noel Keenlyside ◽  
Mojib Latif ◽  
Johann Jungclaus

Abstract The relative impact of the subtropical North and South Pacific Oceans on the tropical Pacific climate mean state and variability is estimated using an ocean–atmosphere–sea ice coupled general circulation model. Tailored experiments are performed in which the model is forced by idealized sea surface temperature anomalies (SSTAs) in the subtropics of both hemispheres. The main results of this study suggest that subtropical South Pacific climate variations play a dominant role in tropical Pacific decadal variability and in the decadal modulation of El Niño–Southern Oscillation (ENSO). In response to a 2°C warming in the subtropical South Pacific, the equatorial Pacific SST increases by about 0.6°C, approximately 65% larger than the change in the North Pacific experiment. The subtropics affect equatorial SST mainly through atmosphere–mixed layer interactions in the South Pacific experiments; the response is mostly accomplished within a decade. The “oceanic tunnel” dominates in the North Pacific experiments; the response takes at least 100 yr to be accomplished. Similar sensitivity experiments conducted with the stand-alone atmosphere model showed that both air–sea interactions and ocean dynamics are crucial in shaping the tropical climate response. The statistics of ENSO exhibit significant changes in amplitude and frequency in response to a warming/cooling of the subtropical South Pacific: a 2°C warming (cooling) of subtropical South Pacific SST reduces (increases) the interannual standard deviation by about 30% (20%) and shortens (lengthens) the ENSO period. The simulated changes in the equatorial zonal SST gradient are the main contributor to the modulation of ENSO variability. The simulated intensification (weakening) of the annual cycle in response to an enhanced warming (cooling) in subtropical South Pacific partly explains the shifts in frequency, but may also lead to a weaker (stronger) ENSO. The subtropical North Pacific thermal forcing did not change the statistical properties of ENSO as strongly.


Sign in / Sign up

Export Citation Format

Share Document