Decadal changes in the relationship between the tropical Pacific and the North Pacific

2012 ◽  
Vol 117 (D15) ◽  
pp. n/a-n/a ◽  
Author(s):  
Sae-Rim Yeo ◽  
Kwang-Yul Kim ◽  
Sang-Wook Yeh ◽  
WonMoo Kim
2003 ◽  
Vol 16 (8) ◽  
pp. 1101-1120 ◽  
Author(s):  
L. Wu ◽  
Z. Liu ◽  
R. Gallimore ◽  
R. Jacob ◽  
D. Lee ◽  
...  

2013 ◽  
Vol 28 (6) ◽  
pp. 1304-1321 ◽  
Author(s):  
Seung-Eon Lee ◽  
Kyong-Hwan Seo

Abstract Forecasting year-to-year variations in East Asian summer monsoon (EASM) precipitation is one of the most challenging tasks in climate prediction because the predictors are not sufficiently well known and the forecast skill of the numerical models is poor. In this paper, a statistical forecast model for changma (the Korean portion of the EASM system) precipitation is proposed that was constructed with three physically based predictors. A forward-stepwise regression was used to select the predictors that included sea surface temperature (SST) anomalies over the North Pacific, the North Atlantic, and the tropical Pacific Ocean. Seasonal predictions with this model showed high forecasting capabilities that had a Gerrity skill score of ~0.82. The dynamical processes associated with the predictors were examined prior to their use in the prediction scheme. All predictors tended to induce an anticyclonic anomaly to the east or southeast of Japan, which was responsible for transporting a large amount of moisture to the southern Korean Peninsula. The predictor in the North Pacific formed an SST front to the east of Japan during the summertime, which maintained a lower-tropospheric baroclinicity. The North Atlantic SST anomaly induced downstream wave propagation in the upper troposphere, developing anticyclonic activity east of Japan. Forcing from the tropical Pacific SST anomaly triggered a cyclonic anomaly over the South China Sea, which was maintained by atmosphere–ocean interactions and induced an anticyclonic anomaly via northward Rossby wave propagation. Overall, the model used for forecasting changma precipitation performed well (R = 0.85) and correctly predicted information for 16 out of 19 yr of observational data.


2018 ◽  
Author(s):  
Stéphane Vannitsem ◽  
Pierre Ekelmans

Abstract. The causal dependences between the dynamics of three different coupled ocean-atmosphere basins, The North Atlantic, the North Pacific and the Tropical Pacific region, NINO3.4, have been explored using data from three reanalyses datasets, namely the ORA-20C, the ORAS4 and the ERA-20C. The approach is based on the Convergent Cross Mapping (CCM) developed by Sugihara et al. (2012) that allows for evaluating the dependences between observables beyond the classical teleconnection patterns based on correlations. The use of CCM on these data mostly reveals that (i) the Tropical Pacific (NINO3.4 region) only influences the dynamics of the North Atlantic region through its annual climatological cycle; (ii) the atmosphere over the North Pacific is dynamically forcing the North Atlantic on a monthly basis; (iii) on longer time scales (interannual), the dynamics of the North Pacific and the North Atlantic are influencing each other through the ocean dynamics, suggesting a connection through the thermohaline circulation. These findings shed a new light on the coupling between these three different important regions of the globe. In particular they call for a deep reassessment of the way teleconnections are interpreted, and for a more rigorous way to evaluate causality and dependences between the different components of the climate system.


2021 ◽  
pp. 1-68
Author(s):  
Jing Ming ◽  
Jianqi Sun

AbstractThis study investigates the relationship between the central tropical Pacific (CTP) sea surface temperature (SST) and the surface air temperature (SAT) variability un-related to canonical El Niño-Southern Oscillation (ENSO) over mid-to-high latitude Eurasia during boreal summers over the past half-century. The results show that their relationship experienced a decadal shift around the early 1980s. Before the early 1980s, the Eurasian SAT-CTP SST connection was weak; after that time, the relationship became stronger, and the SAT anomalies exhibited a significant wave-like pattern over Eurasia. Such a decadal change in the Eurasian SAT-CTP SST relationship could be attributed to decadal changes in the mean state and variability of CTP SST. The warmer mean state and enhanced SST variability after the early 1980s reinforced the convective activities over the tropical Pacific, leading to significantly anomalous divergence/convergence and Rossby wave sources over the North Pacific. This outcome further excited the wave train propagating along the Northern Hemisphere zonal jet stream to northern Eurasia and then affected the surface heat fluxes and atmospheric circulations over the region, resulting in wave-like SATs over Eurasia. However, during the period before the early 1980s, the CTP SST had a weak impact on the North Pacific atmospheric circulation and was consequently not able to excite the wave train pattern to impact the Eurasian atmospheric circulation and SATs. The physical processes linking the CTP SST and Eurasian SAT are further confirmed by numerical simulations. The results of this study are valuable to understanding the variability of summer Eurasian SATs.


2018 ◽  
Vol 9 (3) ◽  
pp. 1063-1083 ◽  
Author(s):  
Stéphane Vannitsem ◽  
Pierre Ekelmans

Abstract. The causal dependences (in a dynamical sense) between the dynamics of three different coupled ocean–atmosphere basins, the North Atlantic, the North Pacific and the tropical Pacific region (Nino3.4), have been explored using data from three reanalysis datasets, namely ORA-20C, ORAS4 and ERA-20C. The approach is based on convergent cross mapping (CCM) developed by Sugihara et al. (2012) that allows for evaluating the dependences between variables beyond the classical teleconnection patterns based on correlations. The use of CCM on these data mostly reveals that (i) the tropical Pacific (Nino3.4 region) only influences the dynamics of the North Atlantic region through its annual climatological cycle; (ii) the atmosphere over the North Pacific is dynamically forcing the North Atlantic on a monthly basis; (iii) on longer timescales (interannual), the dynamics of the North Pacific and the North Atlantic are influencing each other through the ocean dynamics, suggesting a connection through the thermohaline circulation. These findings shed a new light on the coupling between these three different regions of the globe. In particular, they call for a deep reassessment of the way teleconnections are interpreted and for a more rigorous way to evaluate dynamical dependences between the different components of the climate system.


2021 ◽  
pp. 1-46
Author(s):  
Xiaohe An ◽  
Bo Wu ◽  
Tianjun Zhou ◽  
Bo Liu

AbstractInterdecadal Pacific Oscillation (IPO) and Atlantic Multidecadal Oscillation (AMO), two leading modes of decadal climate variability, are not independent. It was proposed that ENSO-like sea surface temperature (SST) variations play a central role in the Pacific responses to the AMO forcing. However, observational analyses indicate that the AMO-related SST anomalies in the tropical Pacific are far weaker than those in the extratropical North Pacific. Here, we show that SST in the North Pacific is tied to the AMO forcing by convective heating associated with precipitation over the tropical Pacific, instead of by SST there, based on an ensemble of pacemaker experiments with North Atlantic SST restored to the observation in a coupled general circulation model. The AMO modulates precipitation over the equatorial and tropical southwestern Pacific through exciting an anomalous zonal circulation and an interhemispheric asymmetry of net moist static energy input into the atmosphere. The convective heating associated with the precipitation anomalies drive SST variations in the North Pacific through a teleconnection, but remarkably weaken the ENSO-like SST anomalies through a thermocline damping effect. This study has implications that the IPO is a combined mode generated by both AMO forcing and local air-sea interactions, but the IPO-related global-warming acceleration/slowdown is independent of the AMO.


Sign in / Sign up

Export Citation Format

Share Document