Large-scale circulation anomalies associated with interannual variation in monthly rainfall over South China from May to August

2014 ◽  
Vol 31 (2) ◽  
pp. 273-282 ◽  
Author(s):  
Qin Su ◽  
Riyu Lu ◽  
Chaofan Li
2017 ◽  
Vol 31 (1) ◽  
pp. 213-232 ◽  
Author(s):  
Ruidan Chen ◽  
Zhiping Wen ◽  
Riyu Lu

Abstract South China experiences extreme heat (EH) most frequently in eastern China. This study specifically explores the large-scale circulation anomalies associated with long-lived EH events in south China. The results show that there is an anomalous cyclone (anticyclone) and active (inactive) convection over south China (the western Pacific) before the EH onset; then, an anticyclone develops and moves northwestward and dominates over south China on the onset day. The anomalous anticyclone maintains its strength over south China and then diminishes and is replaced by another cyclone migrating from the western Pacific after the final day of the EH event. Consequently, the temperature increases over south China around the onset day and is anomalously warm for approximately 10 days on average and then decreases shortly thereafter. The fluctuating anomalies over south China and the western Pacific are intimately related to two intraseasonal oscillation (ISO) modes, namely, the 5–25- and 30–90-day oscillations, which originate from the tropical western Pacific and propagate northwestward. The 5–25-day oscillation is vital to triggering and terminating EH, accounting for approximately half of the original temperature and circulation anomaly transitions. The 30–90-day oscillation favors the persistent warming during EH events, accounting for approximately one-third of the original prolonged warming and anticyclonic anomaly. This result suggests that different ISO modes play crucial roles at different stages of the events. Moreover, a higher annual frequency of long-lived EH days in south China is associated with the transition phase from El Niño to La Niña. It is suggested that both medium-range and interannual forecasting of long-lived EH in south China are possible.


2020 ◽  
Author(s):  
Ke Xu

<p>    The large-scale circulation anomalies associated with extreme heat (EH) in South Korea and southern–central Japan are examined using data during the time period 1979–2016. Statistical analysis indicates that EH days in these two regions are concentrated in July and August and tend to occur simultaneously. These EH days are therefore combined to explore the physical mechanisms leading to their occurrence. The composite results indicate that the anomalous atmospheric warming during EH days is dominantly caused by a significant subsidence anomaly, which is associated with a deep anomalous anticyclone over East Asia. Further investigation of the evolution of circulation anomalies suggests that the anomalous anticyclone over East Asia related to EH is primarily initiated by wave trains originating from upstream regions, which propagate eastward along the Asian westerly jet in the upper troposphere. These wave trains can be categorized into two types that are characterized by the precursor anticyclonic and cyclonic anomalies, respectively, over central Asia. The distinction between these two types of wave train can be explained by the wavenumbers of the Rossby waves, which are modulated by both the intensity and the shape of the Asian westerly jet as the background basic flow.</p>


Sign in / Sign up

Export Citation Format

Share Document