Evaluation of radar and automatic weather station data assimilation for a heavy rainfall event in southern China

2015 ◽  
Vol 32 (7) ◽  
pp. 967-978 ◽  
Author(s):  
Tuanjie Hou ◽  
Fanyou Kong ◽  
Xunlai Chen ◽  
Hengchi Lei ◽  
Zhaoxia Hu
2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Ashish Routray ◽  
Krishna K. Osuri ◽  
Makarand A. Kulkarni

The present study focuses on the performance-based comparison of simulations carried out using nudging (NUD) technique and three-dimensional variational (3DVAR) data assimilation system (3DV) of a heavy rainfall event occurred during 25–28 June 2005 along the west coast of India. The Indian conventional and nonconventional observations are used in the 3DV experiment. Three numerical experiments are conducted using WRF modeling system, the model is integrated upto 54 hours from the initial time 0000 UTC of 25 June 2005. It is noticed that the meteorological parameters are improved in the resulting high-resolution analyses prepared by NUD and 3DV compared to without data assimilation experiment (i.e., called CNTL experiment). However, after the successful inclusion of observations using the 3DVAR data assimilation technique, the model is able to simulate better structure of the convective organization as well as prominent synoptic features associated with the mid-tropospheric cyclones (MTC) than the NUD experiment and well correlated with the observations. The simulated location and intensity of rainfall is also improved in 3DV simulation as compared with other experiments. Similar results are noticed in the root mean squar errors, correlation coefficients, and Equitable Threat Scores between TRMM and model simulated rainfall for all the three experiments.


2011 ◽  
Vol 139 (6) ◽  
pp. 1911-1931 ◽  
Author(s):  
Takuya Kawabata ◽  
Tohru Kuroda ◽  
Hiromu Seko ◽  
Kazuo Saito

Abstract A cloud-resolving nonhydrostatic four-dimensional variational data assimilation system (NHM-4DVAR) was modified to directly assimilate radar reflectivity and applied to a data assimilation experiment using actual observations of a heavy rainfall event. Modifications included development of an adjoint model of the warm rain process, extension of control variables, and development of an observation operator for radar reflectivity. The responses of the modified NHM-4DVAR were confirmed by single-observation assimilation experiments for an isolated deep convection, using pseudo-observations of rainwater at the initial and end times of the data assimilation window. The results showed that the intensity of convection could be adjusted by assimilating appropriate observations of rainwater near the convection and that undesirable convection could be suppressed by assimilating small or no reflectivity. An assimilation experiment using actual observations of a local heavy rainfall in the Tokyo, Japan, metropolitan area was conducted with a horizontal resolution of 2 km. Precipitable water vapor derived from global positioning system data was assimilated at 5-min intervals within 30-min assimilation windows, and surface and wind profiler data were assimilated at 10-min intervals. Doppler radial wind and radar-reflectivity data below the elevation angle of 5.4° were assimilated at 1-min intervals. The 4DVAR assimilation reproduced a line-shaped rainband with a shape and intensity consistent with the observation. Assimilation of radar-reflectivity data intensified the rainband and suppressed false convection. The simulated rainband lasted for 1 h in the extended forecast and then gradually decayed. Sustaining the low-level convergence produced by northerly winds in the western part of the rainband was key to prolonging the predictability of the convective system.


Sign in / Sign up

Export Citation Format

Share Document