scholarly journals Ensemble Data Assimilation and Forecast Experiments for the September 2015 Heavy Rainfall Event in Kanto and Tohoku Regions with Atmospheric Motion Vectors from Himawari-8

SOLA ◽  
2016 ◽  
Vol 12 (0) ◽  
pp. 209-214 ◽  
Author(s):  
Masaru Kunii ◽  
Michiko Otsuka ◽  
Kazuki Shimoji ◽  
Hiromu Seko
2015 ◽  
Vol 93 (4) ◽  
pp. 459-475 ◽  
Author(s):  
Michiko OTSUKA ◽  
Masaru KUNII ◽  
Hiromu SEKO ◽  
Kazuki SHIMOJI ◽  
Masahiro HAYASHI ◽  
...  

2006 ◽  
Vol 21 (4) ◽  
pp. 663-669 ◽  
Author(s):  
Dongliang Wang ◽  
Xudong Liang ◽  
Yihong Duan ◽  
Johnny C. L. Chan

Abstract The fifth-generation Pennsylvania State University–National Center for Atmospheric Research nonhydrostatic Mesoscale Model is employed to evaluate the impact of the Geostationary Meteorological Satellite-5 water vapor and infrared atmospheric motion vectors (AMVs), incorporated with the four-dimensional variational (4DVAR) data assimilation technique, on tropical cyclone (TC) track predictions. Twenty-two cases from eight different TCs over the western North Pacific in 2002 have been examined. The 4DVAR assimilation of these satellite-derived wind observations leads to appreciable improvements in the track forecasts, with average reductions in track error of ∼5% at 12 h, 12% at 24 h, 10% at 36 h, and 7% at 48 h. Preliminary results suggest that the improvement depends on the quantity of the AMV data available for assimilation.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Ashish Routray ◽  
Krishna K. Osuri ◽  
Makarand A. Kulkarni

The present study focuses on the performance-based comparison of simulations carried out using nudging (NUD) technique and three-dimensional variational (3DVAR) data assimilation system (3DV) of a heavy rainfall event occurred during 25–28 June 2005 along the west coast of India. The Indian conventional and nonconventional observations are used in the 3DV experiment. Three numerical experiments are conducted using WRF modeling system, the model is integrated upto 54 hours from the initial time 0000 UTC of 25 June 2005. It is noticed that the meteorological parameters are improved in the resulting high-resolution analyses prepared by NUD and 3DV compared to without data assimilation experiment (i.e., called CNTL experiment). However, after the successful inclusion of observations using the 3DVAR data assimilation technique, the model is able to simulate better structure of the convective organization as well as prominent synoptic features associated with the mid-tropospheric cyclones (MTC) than the NUD experiment and well correlated with the observations. The simulated location and intensity of rainfall is also improved in 3DV simulation as compared with other experiments. Similar results are noticed in the root mean squar errors, correlation coefficients, and Equitable Threat Scores between TRMM and model simulated rainfall for all the three experiments.


2020 ◽  
Vol 37 (11) ◽  
pp. 1222-1238
Author(s):  
Yaodeng Chen ◽  
Jie Shen ◽  
Shuiyong Fan ◽  
Deming Meng ◽  
Cheng Wang

2011 ◽  
Vol 139 (6) ◽  
pp. 1911-1931 ◽  
Author(s):  
Takuya Kawabata ◽  
Tohru Kuroda ◽  
Hiromu Seko ◽  
Kazuo Saito

Abstract A cloud-resolving nonhydrostatic four-dimensional variational data assimilation system (NHM-4DVAR) was modified to directly assimilate radar reflectivity and applied to a data assimilation experiment using actual observations of a heavy rainfall event. Modifications included development of an adjoint model of the warm rain process, extension of control variables, and development of an observation operator for radar reflectivity. The responses of the modified NHM-4DVAR were confirmed by single-observation assimilation experiments for an isolated deep convection, using pseudo-observations of rainwater at the initial and end times of the data assimilation window. The results showed that the intensity of convection could be adjusted by assimilating appropriate observations of rainwater near the convection and that undesirable convection could be suppressed by assimilating small or no reflectivity. An assimilation experiment using actual observations of a local heavy rainfall in the Tokyo, Japan, metropolitan area was conducted with a horizontal resolution of 2 km. Precipitable water vapor derived from global positioning system data was assimilated at 5-min intervals within 30-min assimilation windows, and surface and wind profiler data were assimilated at 10-min intervals. Doppler radial wind and radar-reflectivity data below the elevation angle of 5.4° were assimilated at 1-min intervals. The 4DVAR assimilation reproduced a line-shaped rainband with a shape and intensity consistent with the observation. Assimilation of radar-reflectivity data intensified the rainband and suppressed false convection. The simulated rainband lasted for 1 h in the extended forecast and then gradually decayed. Sustaining the low-level convergence produced by northerly winds in the western part of the rainband was key to prolonging the predictability of the convective system.


2018 ◽  
Vol 146 (5) ◽  
pp. 1549-1569 ◽  
Author(s):  
Shixuan Zhang ◽  
Zhaoxia Pu ◽  
Christopher Velden

Abstract The impacts of enhanced satellite-derived atmospheric motion vectors (AMVs) on the numerical prediction of intensity changes during Hurricanes Gonzalo (2014) and Joaquin (2015) are examined. Enhanced AMVs benefit from special data-processing strategies and are examined for impact on model forecasts via assimilation experiments by employing the National Centers for Environmental Prediction (NCEP) operational Hurricane Weather Research and Forecasting (HWRF) Model using a Gridpoint Statistical Interpolation analysis system (GSI)-based ensemble–variational hybrid system. Two different data assimilation (DA) configurations, one with and one without the use of vortex initialization (VI), are compared. It is found that the assimilation of enhanced AMVs can improve the HWRF track and intensity forecasts of Gonzalo and Joaquin during their intensity change phases. The degree of data impact depends on the DA configuration used. Overall, assimilation of enhanced AMVs in the innermost domain (e.g., storm inner-core region and its immediate vicinity) outperforms other DA configurations, both with and without VI, as it results in better track and intensity forecasts. Compared to the experiment with VI, assimilation of enhanced AMVs without VI reveals more notable data impact on the forecasts of Hurricane Gonzalo, as the VI before DA alters the first guess and reduces the actual number of AMV observations assimilated into the DA system. Even with VI, assimilation of enhanced AMVs in the inner-core region can at least partially mitigate the negative effect of VI on the intensity forecast of Hurricane Gonzalo and alleviate the unrealistic vortex weakening in the simulation by removing unrealistic outflow structure and unfavorable thermodynamic conditions, thus leading to improved intensity forecasts.


Sign in / Sign up

Export Citation Format

Share Document