scholarly journals CAS-LSM Datasets for the CMIP6 Land Surface Snow and Soil Moisture Model Intercomparison Project

Author(s):  
Binghao Jia ◽  
Longhuan Wang ◽  
Yan Wang ◽  
Ruichao Li ◽  
Xin Luo ◽  
...  

AbstractThe datasets of the five Land-offline Model Intercomparison Project (LMIP) experiments using the Chinese Academy of Sciences Land Surface Model (CAS-LSM) of CAS Flexible Global-Ocean-Atmosphere-Land System Model Grid-point version 3 (CAS FGOALS-g3) are presented in this study. These experiments were forced by five global meteorological forcing datasets, which contributed to the framework of the Land Surface Snow and Soil Moisture Model Intercomparison Project (LS3MIP) of CMIP6. These datasets have been released on the Earth System Grid Federation node. In this paper, the basic descriptions of the CAS-LSM and the five LMIP experiments are shown. The performance of the soil moisture, snow, and land-atmosphere energy fluxes was preliminarily validated using satellite-based observations. Results show that their mean states, spatial patterns, and seasonal variations can be reproduced well by the five LMIP simulations. It suggests that these datasets can be used to investigate the evolutionary mechanisms of the global water and energy cycles during the past century.

Author(s):  
Yukihiko ONUMA ◽  
Hyungjun KIM ◽  
Kei YOSHIMURA ◽  
Tomoko NITTA ◽  
Ryouta O’ISHI ◽  
...  

2016 ◽  
Vol 9 (8) ◽  
pp. 2809-2832 ◽  
Author(s):  
Bart van den Hurk ◽  
Hyungjun Kim ◽  
Gerhard Krinner ◽  
Sonia I. Seneviratne ◽  
Chris Derksen ◽  
...  

Abstract. The Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP) is designed to provide a comprehensive assessment of land surface, snow and soil moisture feedbacks on climate variability and climate change, and to diagnose systematic biases in the land modules of current Earth system models (ESMs). The solid and liquid water stored at the land surface has a large influence on the regional climate, its variability and predictability, including effects on the energy, water and carbon cycles. Notably, snow and soil moisture affect surface radiation and flux partitioning properties, moisture storage and land surface memory. They both strongly affect atmospheric conditions, in particular surface air temperature and precipitation, but also large-scale circulation patterns. However, models show divergent responses and representations of these feedbacks as well as systematic biases in the underlying processes. LS3MIP will provide the means to quantify the associated uncertainties and better constrain climate change projections, which is of particular interest for highly vulnerable regions (densely populated areas, agricultural regions, the Arctic, semi-arid and other sensitive terrestrial ecosystems). The experiments are subdivided in two components, the first addressing systematic land biases in offline mode (“LMIP”, building upon the 3rd phase of Global Soil Wetness Project; GSWP3) and the second addressing land feedbacks attributed to soil moisture and snow in an integrated framework (“LFMIP”, building upon the GLACE-CMIP blueprint).


2016 ◽  
Author(s):  
Bart van den Hurk ◽  
Hyungjun Kim ◽  
Gerhard Krinner ◽  
Sonia I. Seneviratne ◽  
Chris Derksen ◽  
...  

Abstract. The Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP) is designed to provide a comprehensive assessment of land surface, snow, and soil moisture feedbacks on climate variability and climate change, and to diagnose systematic biases in the land modules of current Earth System Models (ESMs). The solid and liquid water stored at the land surface has a large influence on the regional climate, its variability and predictability, including effects on the energy, water and carbon cycles. Notably, snow and soil moisture affect surface radiation and flux partitioning properties, moisture storage and land surface memory. They both strongly affect atmospheric conditions, in particular surface air temperature and precipitation, but also large-scale circulation patterns. However, models show divergent responses and representations of these feedbacks as well as systematic biases in the underlying processes. LS3MIP will provide the means to quantify the associated uncertainties and better constrain climate change projections, which is of particular interest for highly vulnerable regions (densely populated areas, agricultural regions, the Arctic, semi-arid and other sensitive terrestrial ecosystems). The experiments are subdivided in two components, the first addressing systematic land biases in offline mode ("LMIP", building upon the 3rd phase of Global Soil Wetness Project; GSWP3) and the second addressing land feedbacks attributed to soil moisture and snow in an integrated framework ("LFMIP", building upon the GLACE-CMIP blueprint).


2009 ◽  
Vol 90 (12) ◽  
pp. 1865-1880 ◽  
Author(s):  
Aaron Boone ◽  
Patricia de Rosnay ◽  
Gianpaolo Balsamo ◽  
Anton Beljaars ◽  
Franck Chopin ◽  
...  

2009 ◽  
Vol 35 (1) ◽  
pp. 127-142 ◽  
Author(s):  
Aaron Anthony Boone ◽  
Isabelle Poccard-Leclercq ◽  
Yongkang Xue ◽  
Jinming Feng ◽  
Patricia de Rosnay

2021 ◽  
Author(s):  
Vibin Jose ◽  
Anantharaman Chandrasekar

Abstract Land Surface Models (LSMs) are typically forced with observed precipitation and surface meteorology and hence the soil moisture estimates obtained from LSM do not reflect the contribution of irrigation to the soil moisture estimates. However, the satellite retrievals of soil moisture estimates do register the signature of the irrigation effects. It is suggested that the soil moisture estimates obtained from LSM may reflect the role of irrigation if they are assimilated with soil moisture estimated from satellites. The present study evaluates the improvement of soil moisture estimates obtained from Noah LSM by ingesting them with the satellite derived Advanced Scatterometer (ASCAT) soil moisture retrievals over the Indian domain for the year 2012. The above ingesting of soil moisture estimates is performed using the Land Information System (LIS). The improved soil moisture estimates are validated with the in-situ India Meteorological Department (IMD) soil moisture observations and also with the high-resolution Indian Monsoon Data Assimilation and Analysis (IMDAA) regional reanalysis data. The percentage of grid points over the Indian domain where the improvement parameter shows positive values are 59.14% (winter), 69.17% (pre-monsoon), 43.59% (monsoon), and 77.53% (post-monsoon). Furthermore, the forecast impact parameter also indicates the positive impact of data assimilation. Also, 12 of the 22 stations show reduced RMSE soil moisture error after data assimilation is performed while only 6 of the 22 stations show higher correlation coefficient in soil moisture without data assimilation, when validated with the in-situ IMD soil moisture observations. The study has also evaluated the irrigation impact of ASCAT in the assimilated soil moisture using triple collocation (TC) method. For the TC analysis, the model based Global Land Data Assimilation System (GLDAS)Catchment Land Surface Model (CLSM), and MERRA (Modern-Era Retrospective analysis for Research and Applications) Land data set together with soil moisture model outputs with and without ASCAT assimilation are used to calculate the error and correlation coefficient of each of the two set of triplets. The results of the TC analysis further conclusively shows the positive impact of irrigation effects in the ASCAT assimilated soil moisture model output.


Author(s):  
Bian He ◽  
Xiaoqi Zhang ◽  
Anmin Duan ◽  
Qing Bao ◽  
Yimin Liu ◽  
...  

AbstractLarge-ensemble simulations of the atmosphere-only time-slice experiments for the Polar Amplification Model Intercomparison Project (PAMIP) were carried out by the model group of the Chinese Academy of Sciences (CAS) Flexible Global Ocean-Atmosphere-Land System (FGOALS-f3-L). Eight groups of experiments forced by different combinations of the sea surface temperature (SST) and sea ice concentration (SIC) for pre-industrial, present-day, and future conditions were performed and published. The time-lag method was used to generate the 100 ensemble members, with each member integrating from 1 April 2000 to 30 June 2001 and the first two months as the spin-up period. The basic model responses of the surface air temperature (SAT) and precipitation were documented. The results indicate that Arctic amplification is mainly caused by Arctic SIC forcing changes. The SAT responses to the Arctic SIC decrease alone show an obvious increase over high latitudes, which is similar to the results from the combined forcing of SST and SIC. However, the change in global precipitation is dominated by the changes in the global SST rather than SIC, partly because tropical precipitation is mainly driven by local SST changes. The uncertainty of the model responses was also investigated through the analysis of the large-ensemble members. The relative roles of SST and SIC, together with their combined influence on Arctic amplification, are also discussed. All of these model datasets will contribute to PAMIP multi-model analysis and improve the understanding of polar amplification.


2007 ◽  
Vol 8 (1) ◽  
pp. 68-87 ◽  
Author(s):  
Margaret A. LeMone ◽  
Fei Chen ◽  
Joseph G. Alfieri ◽  
Mukul Tewari ◽  
Bart Geerts ◽  
...  

Abstract Analyses of daytime fair-weather aircraft and surface-flux tower data from the May–June 2002 International H2O Project (IHOP_2002) and the April–May 1997 Cooperative Atmosphere Surface Exchange Study (CASES-97) are used to document the role of vegetation, soil moisture, and terrain in determining the horizontal variability of latent heat LE and sensible heat H along a 46-km flight track in southeast Kansas. Combining the two field experiments clearly reveals the strong influence of vegetation cover, with H maxima over sparse/dormant vegetation, and H minima over green vegetation; and, to a lesser extent, LE maxima over green vegetation, and LE minima over sparse/dormant vegetation. If the small number of cases is producing the correct trend, other effects of vegetation and the impact of soil moisture emerge through examining the slope ΔxyLE/ΔxyH for the best-fit straight line for plots of time-averaged LE as a function of time-averaged H over the area. Based on the surface energy balance, H + LE = Rnet − Gsfc, where Rnet is the net radiation and Gsfc is the flux into the soil; Rnet − Gsfc ∼ constant over the area implies an approximately −1 slope. Right after rainfall, H and LE vary too little horizontally to define a slope. After sufficient drying to produce enough horizontal variation to define a slope, a steep (∼−2) slope emerges. The slope becomes shallower and better defined with time as H and LE horizontal variability increases. Similarly, the slope becomes more negative with moister soils. In addition, the slope can change with time of day due to phase differences in H and LE. These trends are based on land surface model (LSM) runs and observations collected under nearly clear skies; the vegetation is unstressed for the days examined. LSM runs suggest terrain may also play a role, but observational support is weak.


Sign in / Sign up

Export Citation Format

Share Document