Dissimilarity among Ocean Reanalyses in Equatorial Pacific Upper-Ocean Heat Content and Its Relationship with ENSO

2022 ◽  
Vol 39 (1) ◽  
pp. 67-79
Author(s):  
Paxson K. Y. Cheung ◽  
Wen Zhou ◽  
Dongxiao Wang ◽  
Marco Y. T. Leung
2020 ◽  
Vol 33 (10) ◽  
pp. 4419-4437 ◽  
Author(s):  
Fuan Xiao ◽  
Dongxiao Wang ◽  
Lei Yang

AbstractIn this study, an enhanced footprint of the interdecadal Pacific oscillation (IPO) on the upper-ocean heat content (OHC) in the South China Sea (SCS) since the 1990s is revealed. The negative OHC–IPO correlation is significant (r = −0.71) during 1990–2010 [period 2 (P2)], whereas it is statistically insignificant during 1960–80 [period 1 (P1)]. Analyses show that the scope of the equatorial Pacific wind anomalies is wider during P2 compared with that during P1 due to a larger east–west SST gradient and enhanced tropical warming in the Indian Ocean. When the IPO is negative during P2, a wider scope of the wind stress anomalies associated with the IPO could lead to 1) the southward migration of the North Equatorial Current bifurcation latitude (NECBL) by affecting the wind stress curl over the key region where it is near the climatological NECBL and 2) an increase in the interbasin pressure gradient (sea surface height difference) between the western Pacific and the SCS; these two processes strengthen the Kuroshio and weaken the Luzon Strait transport (LST) or SCS throughflow into the SCS. Also, 3) the equatorial Pacific wind anomalies are wide enough to directly weaken the LST in the SCS through the “island rule.” These three pathways finally change the oceanic gyre in the SCS and increase the OHC. Our results suggest that the scope of the tropical wind stress is the crucial factor when we consider the relationship between the upper ocean thermal conditions in the SCS and the Pacific variability.


2017 ◽  
Vol 74 (2) ◽  
pp. 219-238 ◽  
Author(s):  
Junqiao Feng ◽  
Fei-fei Jin ◽  
Dunxin Hu ◽  
Shoude Guan

2013 ◽  
Vol 43 (10) ◽  
pp. 2230-2244 ◽  
Author(s):  
Shenfu Dong ◽  
Kathryn A. Kelly

Abstract Formation and the subsequent evolution of the subtropical mode water (STMW) involve various dynamic and thermodynamic processes. Proper representation of mode water variability and contributions from various processes in climate models is important in order to predict future climate change under changing forcings. The North Atlantic STMW, often referred to as Eighteen Degree Water (EDW), in three coupled models, both with data assimilation [GFDL coupled data assimilation (GFDL CDA)] and without data assimilation [GFDL Climate Model, version 2.1 (GFDL CM2.1), and NCAR Community Climate System Model, version 3 (CCSM3)], is analyzed to evaluate how well EDW processes are simulated in those models and to examine whether data assimilation alters the model response to forcing. In comparison with estimates from observations, the data-assimilating model gives a better representation of the formation rate, the spatial distribution of EDW, and its thickness, with the largest EDW variability along the Gulf Stream (GS) path. The EDW formation rate in GFDL CM2.1 is very weak because of weak heat loss from the ocean in the model. Unlike the observed dominant southward movement of the EDW, the EDW in GFDL CM2.1 and CCSM3 moves eastward after formation in the excessively wide GS in the models. However, the GFDL CDA does not capture the observed thermal response of the overlying atmosphere to the ocean. Observations show a robust anticorrelation between the upper-ocean heat content and air–sea heat flux, with upper-ocean heat content leading air–sea heat flux by a few months. This anticorrelation is well captured by GFDL CM2.1 and CCSM3 but not by GFDL CDA. Only GFDL CM2.1 captures the observed anticorrelation between the upper-ocean heat content and EDW volume. This suggests that, although data assimilation corrects the readily observed variables, it degrades the model thermodynamic response to forcing.


Sign in / Sign up

Export Citation Format

Share Document