Utility of plain radiographs and MRI in cervical spine clearance in symptomatic non-obtunded pediatric patients without high-impact trauma

2016 ◽  
Vol 33 (2) ◽  
pp. 249-258 ◽  
Author(s):  
Justin M. Moore ◽  
Jonathan Hall ◽  
Michael Ditchfield ◽  
Christopher Xenos ◽  
Andrew Danks
2011 ◽  
Vol 8 (1) ◽  
pp. 57-62 ◽  
Author(s):  
Kyle M. Fargen ◽  
Richard C. E. Anderson ◽  
David H. Harter ◽  
Peter D. Angevine ◽  
Valerie C. Coon ◽  
...  

Object Although rarely encountered, pediatric patients with severe cervical spine deformities and instability may occasionally require occipitocervicothoracic instrumentation and fusion. This case series reports the experience of 4 pediatric centers in managing this condition. Occipitocervical fixation is the treatment of choice for craniocervical instability that is symptomatic or threatens neurological function. In children, the most common distal fixation level with modern techniques is C-2. Treated patients maintain a significant amount of neck motion due to the flexibility of the subaxial cervical spine. Distal fixation to the thoracic spine has been reported in adult case series. This procedure is to be avoided due to the morbidity of complete loss of head and neck motion. Unfortunately, in rare cases, the pathological condition or highly aberrant anatomy may require occipitocervical constructs to include the thoracic spine. Methods The authors identified 13 patients who underwent occipitocervicothoracic fixation. Demographic, radiological, and clinical data were gathered through retrospective review of patient records from 4 institutions. Results Patients ranged from 1 to 14 years of age. There were 7 girls and 6 boys. Diagnoses included Klippel-Feil, Larsen, Morquio, and VATER syndromes as well as postlaminectomy kyphosis and severe skeletal dysplasia. Four patients were neurologically intact and 9 had myelopathy. Five children were treated with preoperative traction prior to instrumentation; 5 underwent both anterior and posterior spinal reconstruction. Two patients underwent instrumentation beyond the thoracic spine. Allograft was used anteriorly, and autologous rib grafts were used in the majority for posterior arthrodesis. Follow-up ranged from 0 to 43 months. Computed tomography confirmed fusion in 9 patients; the remaining patients were lost to follow-up or had not undergone repeat imaging at the time of writing. Patients with myelopathy either improved or stabilized. One child had mild postoperative unilateral upper-extremity weakness, and a second child died due to a tracheostomy infection. All patients had severe movement restriction as expected. Conclusions Occipitocervicothoracic stabilization may be employed to stabilize and reconstruct complex pediatric spinal deformities. Neurological function can be maintained or improved. The long-term morbidity of loss of cervical motion remains to be elucidated.


1995 ◽  
Vol 16 (1) ◽  
pp. 28-28
Author(s):  
Jeffrey R. Avner

Although rare in pediatrics, cervical spine injuries still are associated with serious morbidity, disability, and mortality. Many of these injuries are exacerbated by inadequate neck immobilization or improper manipulation. Thus, the physician should be aware of which children are at risk for cervical spine injury and how to assess these patients properly. To find clinical markers that identify children who actually have cervical spine injuries, Rachesky et al reviewed 2133 cervical spine radiographs obtained in pediatric patients during a 7-year period. Of these children, 25 (1.2%) had abnormalities confirmed on radiographs. The incidence of injury increased with age; only four of the children who had cervical spine injuries were less than 8 years old.


2021 ◽  
Author(s):  
B. Zeinali-Rafsanjani ◽  
S. Haseli ◽  
R. Jalli ◽  
M. Saeedi-Moghadam

Medical imaging with ionizing radiation in pediatric patients is rising, and their radiation sensitivity is 2–3 times more than adults. The objective of this study was to estimate the total effective dose (ED) of all medical imaging by CT scan and plain radiography in patients in pediatric neurosurgery department. Patients with at least one brain CT scan and recorded dose length product (DLP) were included. Patients’ imaging data were collected from the picture-archiving-and-communicating system (PACS) using their national code to find all their medical imaging. Total ED (mSv) from CT scans and plain radiographs were calculated. A total of 300 patients were included, of which 129 were females and 171 males with a mean age of 5.45 ± 4.34 years. Mean DLPs of brain, abdomen, and chest CT were 329.16, 393.06, 284.46 mGy.cm. The most frequent CT scans in these children were brain CT scans with ED range of 0.09 to 47.09 mSv. Total ED due to all CT scans and plain radiographs were in the range of 0.38 to 63.41 mSv. Although the mean DLP of each brain, chest, and abdomen CT of patients was in the range of DRLs reported by previous studies, the patients with numerous CT scans received more radiation doses than mean ED (6.21 mSv between all age groups). The most frequent CT scan was the brain, and the most frequent plain radiographs were chest and lower extremities. It can be concluded that reducing the number of CT scans or plain radiographs by appropriate physical exams or replacing them with modalities that do not use ionizing radiation can reduce ED.


2022 ◽  
pp. 57-73
Author(s):  
Garrett K. Harada ◽  
Kayla L. Leverich ◽  
Zakariah K. Siyaji ◽  
Philip K. Louie ◽  
Howard S. An

2006 ◽  
Vol 21 (4) ◽  
pp. 1-5 ◽  
Author(s):  
Jay Jagannathan ◽  
Aaron S. Dumont ◽  
Daniel M. Prevedello ◽  
Christopher I. Shaffrey ◽  
John A. Jane

✓Sports-related injuries to the spine, although relatively rare compared with head injuries, contribute to significant morbidity and mortality in children. The reported incidence of traumatic cervical spine injury in pediatric athletes varies, and most studies are limited because of the low prevalence of injury. The anatomical and biomechanical differences between the immature spine of pediatric patients and the mature spine of adults that make pediatric patients more susceptible to injury include a greater mobility of the spine due to ligamentous laxity, shallow angulations of facet joints, immature development of neck musculature, and incomplete ossification of the vertebrae. As a result of these differences, 60 to 80% of all pediatric vertebral injuries occur in the cervical region. Understanding pediatric injury biomechanics in the cervical spine is important to the neurosurgeon, because coaches, parents, and athletes who place themselves in positions known to be associated with spinal cord injury (SCI) run a higher risk of such injury and paralysis. The mechanisms of SCI can be broadly subclassified into five types: axial loading, dislocation, lateral bending, rotation, and hyperflexion/hyperextension, although severe injuries often result from a combination of more than one of these subtypes. The aim of this review was to detail the characteristics and management of pediatric cervical spine injury.


2016 ◽  
Vol 145 ◽  
pp. 106-107
Author(s):  
Xiao Wu ◽  
David Durand ◽  
Vivek B. Kalra ◽  
Renu Liu ◽  
Howard P. Forman ◽  
...  

2014 ◽  
Vol 46 (2) ◽  
pp. 257-263 ◽  
Author(s):  
Benton R. Hunter ◽  
Samuel M. Keim ◽  
Rawle A. Seupaul ◽  
Gene Hern

Sign in / Sign up

Export Citation Format

Share Document