Simulated climate change during the last 1,000 years: comparing the ECHO-G general circulation model with the MAGICC simple climate model

2006 ◽  
Vol 27 (2-3) ◽  
pp. 185-197 ◽  
Author(s):  
Timothy J. Osborn ◽  
Sarah C. B. Raper ◽  
Keith R. Briffa
2014 ◽  
Vol 27 (15) ◽  
pp. 5786-5800 ◽  
Author(s):  
Gerhard Krinner ◽  
Chloé Largeron ◽  
Martin Ménégoz ◽  
Cécile Agosta ◽  
Claire Brutel-Vuilmet

Abstract A variable-resolution atmospheric general circulation model (AGCM) is used for climate change projections over the Antarctic. The present-day simulation uses prescribed observed sea surface conditions, while a set of five simulations for the end of the twenty-first century (2070–99) under the Special Report on Emissions Scenarios (SRES) A1B scenario uses sea surface condition anomalies from selected coupled ocean–atmosphere climate models from phase 3 of the Coupled Model Intercomparison Project (CMIP3). Analysis of the results shows that the prescribed sea surface condition anomalies have a very strong influence on the simulated climate change on the Antarctic continent, largely dominating the direct effect of the prescribed greenhouse gas concentration changes in the AGCM simulations. Complementary simulations with idealized forcings confirm these results. An analysis of circulation changes using self-organizing maps shows that the simulated climate change on regional scales is not principally caused by shifts of the frequencies of the dominant circulation patterns, except for precipitation changes in some coastal regions. The study illustrates that in some respects the use of bias-corrected sea surface boundary conditions in climate projections with a variable-resolution atmospheric general circulation model has some distinct advantages over the use of limited-area atmospheric circulation models directly forced by generally biased coupled climate model output.


2009 ◽  
Vol 137 (9) ◽  
pp. 2851-2868 ◽  
Author(s):  
Masaru Inatsu ◽  
Masahide Kimoto

Abstract This study newly developed the interactively nested climate model (INCL) using a general circulation model (GCM) interactively nested with a regional atmospheric model (RAM). One interactive experiment with finer RAM topography and another with coarser topography, as well as offline versions of each experiment, were performed to investigate the effects of subsynoptic-scale eddies and subsynoptic-scale mountains in northeast Asia on the larger-scale climate, using the GCM with T42 atmosphere and the RAM with 40-km mesh size in the INCL system. The subsynoptic-scale eddy effect restrictively increased synoptic-scale eddy activity within the RAM domain. In contrast, subsynoptic-scale mountains had the effect of robust anticyclonic circulation around the Sea of Japan and effectively forced larger-scale circulation. The effect was positively fed back to the mean field and amplified the anticyclonic circulation accompanied by suppressed storm activity in northeast Asia. The results suggest that subsynoptic-scale mountains affect not only subsynoptic-scale eddies but also the global climate.


Sign in / Sign up

Export Citation Format

Share Document