Frequency distributions of transient regional climate change from perturbed physics ensembles of general circulation model simulations

2006 ◽  
Vol 27 (4) ◽  
pp. 357-375 ◽  
Author(s):  
G. R. Harris ◽  
D. M. H. Sexton ◽  
B. B. B. Booth ◽  
M. Collins ◽  
J. M. Murphy ◽  
...  
2009 ◽  
Vol 699 (1) ◽  
pp. 564-584 ◽  
Author(s):  
Adam P. Showman ◽  
Jonathan J. Fortney ◽  
Yuan Lian ◽  
Mark S. Marley ◽  
Richard S. Freedman ◽  
...  

2021 ◽  
Author(s):  
Sergio Andres Romero-Duque ◽  
Maria Cristina Arenas-Bautista ◽  
Leonardo David Donado

<p>Hydrological cycle dynamics can be simulated through continuous numerical modelling in order to estimate a water budget at different time and spatial scales, taking a specific importance when considering climate change effects on the various processes that take place on a basin. With the purpose of estimating potential impacts of climate change on the basin water balance, the present study takes place on the catchment area of the Carare-Minero river, a basin located in the Middle Magdalena Valley (Colombia), a zone in which important economic activities unfold such as stockbreeding and agriculture, where regional climate change scenarios were made for the precipitation and temperature variables, along with a continuous hydrological modeling of the basin using the HEC-HMS software. The regional scenarios for the precipitation and temperature were developed through statistical downscaling based on General Circulation Models (GCM) of the sixth phase of the Coupled Intercomparison Project (CMIP6), with projections to 2100 for seven of the new set of CO2 emission scenarios, the Shared Socioeconomic Pathways (SSP), that take into account different socioeconomic assumptions for climate policies, with a baseline of 25 years between 1990 and 2014; the emission scenarios evaluated from lowest to highest CO2 emission were SSP1-1.9, SSP1-2.6, SSP4-3.4, SSP2-4.5, SSP4-6.0, SSP3-7.0 and SSP5-8.5. The obtained data were used as an input for the model of the basin in HEC-HMS obtaining a new water balance for each scenario comparing the results with the baseline case for current conditions, resulting in an evapotranspiration increase due to higher temperatures that, alongside changes in precipitation, produces lower flows for the higher SSP’s of SSP5-8.5 and SSP3-7.0, in contrast with the low emission scenarios of SSP1-1.9 and SSP1-2.6 were the changes in temperature and precipitation are less drastic generating minor alterations in the hydrological balance.</p><p>Key words: Hydrological modeling, Middle Magdalena Valley, regional climate change scenarios, water balance.</p>


2010 ◽  
Vol 23 (13) ◽  
pp. 3474-3496 ◽  
Author(s):  
Amy H. Butler ◽  
David W. J. Thompson ◽  
Ross Heikes

Abstract The steady-state extratropical atmospheric response to thermal forcing is investigated in a simple atmospheric general circulation model. The thermal forcings qualitatively mimic three key aspects of anthropogenic climate change: warming in the tropical troposphere, cooling in the polar stratosphere, and warming at the polar surface. The principal novel findings are the following: 1) Warming in the tropical troposphere drives two robust responses in the model extratropical circulation: poleward shifts in the extratropical tropospheric storm tracks and a weakened stratospheric Brewer–Dobson circulation. The former result suggests heating in the tropical troposphere plays a fundamental role in the poleward contraction of the storm tracks found in Intergovernmental Panel on Climate Change (IPCC)-class climate change simulations; the latter result is in the opposite sense of the trends in the Brewer–Dobson circulation found in most previous climate change experiments. 2) Cooling in the polar stratosphere also drives a poleward shift in the extratropical storm tracks. The tropospheric response is largely consistent with that found in previous studies, but it is shown to be very sensitive to the level and depth of the forcing. In the stratosphere, the Brewer–Dobson circulation weakens at midlatitudes, but it strengthens at high latitudes because of anomalously poleward heat fluxes on the flank of the polar vortex. 3) Warming at the polar surface drives an equatorward shift of the storm tracks. The storm-track response to polar warming is in the opposite sense of the response to tropical tropospheric heating; hence large warming over the Arctic may act to attenuate the response of the Northern Hemisphere storm track to tropical heating. 4) The signs of the tropospheric and stratospheric responses to all thermal forcings considered here are robust to seasonal changes in the basic state, but the amplitude and details of the responses exhibit noticeable differences between equinoctial and wintertime conditions. Additionally, the responses exhibit marked nonlinearity in the sense that the response to multiple thermal forcings applied simultaneously is quantitatively different from the sum of the responses to the same forcings applied independently. Thus the response of the model to a given thermal forcing is demonstrably dependent on the other thermal forcings applied to the model.


Sign in / Sign up

Export Citation Format

Share Document