Internal variability in a regional climate model over West Africa

2007 ◽  
Vol 30 (2-3) ◽  
pp. 191-202 ◽  
Author(s):  
Emilie Vanvyve ◽  
Nicholas Hall ◽  
Christophe Messager ◽  
Stéphanie Leroux ◽  
Jean-Pascal van Ypersele
2014 ◽  
Vol 27 (15) ◽  
pp. 5708-5723 ◽  
Author(s):  
Marc P. Marcella ◽  
Elfatih A. B. Eltahir

Abstract This article presents a new irrigation scheme and biome to the dynamic vegetation model, Integrated Biosphere Simulator (IBIS), coupled to version 3 of the Regional Climate Model (RegCM3-IBIS). The new land cover allows for only the plant functional type (crop) to exist in an irrigated grid cell. Irrigation water (i.e., negative runoff) is applied until the soil root zone reaches relative field capacity. The new scheme allows for irrigation scheduling (i.e., when to apply water) and for the user to determine the crop to be grown. Initial simulations show a large sensitivity of the scheme to soil texture types, how the water is applied, and the climatic conditions over the region. Application of the new scheme is tested over West Africa, specifically Mali and Niger, to simulate the potential irrigation of the Niger River. A realistic representation of irrigation of the Niger River is performed by constraining the land irrigated by the annual flow of the Niger River and the amount of arable land in the region as reported by the Food and Agriculture Organization of the United Nations (FAO). A 30-yr simulation including irrigated cropland is compared to a 30-yr simulation that is identical but with no irrigation of the Niger. Results indicate a significant greening of the irrigated land as evapotranspiration over the crop fields largely increases—mostly via increases in transpiration from plant growth. The increase in the evapotranspiration, or latent heat flux (by 65–150 W m−2), causes a significant decrease in the sensible heat flux while surface temperatures cool on average by nearly 5°C. This cooling is felt downwind, where average daily temperatures outside the irrigation are reduced by 0.5°–1.0°C. Likewise, large increases in 2-m specific humidity are experienced across the irrigated cropland (on the order of 5 g kg−1) but also extend farther north and east, reflecting the prevailing surface southwesterlies. Changes (decreases) in rainfall are found only over the irrigated lands of west Mali. The decrease in rainfall can be explained by the large surface cooling and collapse of the boundary layer (by approximately 500 m). Both lead to a reduction in the triggering of convection as the convective inhibition, or negative buoyant energy, is never breached. Nevertheless, the new scheme and land cover allows for a novel line of research that can accurately reflect the effects of irrigation on climate and the surrounding environment using a dynamic vegetation model coupled to a regional climate model.


2012 ◽  
Vol 69 (2) ◽  
pp. 714-724 ◽  
Author(s):  
Julien Crétat ◽  
Benjamin Pohl

Abstract The authors analyze to what extent the internal variability simulated by a regional climate model is sensitive to its physical parameterizations. The influence of two convection schemes is quantified over southern Africa, where convective rainfall predominates. Internal variability is much larger with the Kain–Fritsch scheme than for the Grell–Dévényi scheme at the seasonal, intraseasonal, and daily time scales, and from the regional to the local (grid point) spatial scales. Phenomenological analyses reveal that the core (periphery) of the rain-bearing systems tends to be highly (weakly) reproducible, showing that it is their morphological features that induce the largest internal variability in the model. In addition to the domain settings and the lateral forcing conditions extensively analyzed in the literature, the physical package appears thus as a key factor that modulates the reproducible and irreproducible components of regional climate variability.


2011 ◽  
Vol 37 (7-8) ◽  
pp. 1335-1356 ◽  
Author(s):  
Julien Crétat ◽  
Clémence Macron ◽  
Benjamin Pohl ◽  
Yves Richard

2009 ◽  
Vol 10 (1) ◽  
pp. 3-21 ◽  
Author(s):  
Biljana Music ◽  
Daniel Caya

Abstract This study investigates the sensitivity of components of the hydrological cycle simulated by the Canadian Regional Climate Model (CRCM) to lateral boundary forcing, the complexity of the land surface scheme (LSS), and the internal variability arising from different models’ initial conditions. This evaluation is a contribution to the estimation of the uncertainty associated to regional climate model (RCM) simulations. The analysis was carried out over the period 1961–99 for three North American watersheds, and it looked at climatological seasonal means, mean (climatological) annual cycles, and interanual variability. The three watersheds—the Mississippi, the St. Lawrence, and the Mackenzie River basins—were selected to cover a large range of climate conditions. An evaluation of simulated water budget components with available observations was also included in the analysis. Results indicated that the response of climatological means and annual cycles of water budget components to land surface parameterizations and lateral boundary conditions varied from basin to basin. Sensitivity to lateral boundary conditions is, in general, smaller than sensitivity to LSS and tends to be stronger for the northern basins (Mackenzie and St. Lawrence). Interannual variability was unaffected by changes in LSS and in driving data. Internal variability triggered by different initial conditions and the nonlinear nature of the climate model did not significantly affect either the 39-yr climatology, the climatological annual cycles, or the interannual variability. A comparison with observations suggests that although the simple Manabe-based LSS may be adequate for simulations of climatological means, skillful simulation of annual cycles require the use of a state-of-the-art LSS.


2008 ◽  
Vol 136 (12) ◽  
pp. 4980-4996 ◽  
Author(s):  
Philippe Lucas-Picher ◽  
Daniel Caya ◽  
Sébastien Biner ◽  
René Laprise

Abstract The present work introduces a new and useful tool to quantify the lateral boundary forcing of a regional climate model (RCM). This tool, an aging tracer, computes the time the air parcels spend inside the limited-area domain of an RCM. The aging tracers are initialized to zero when the air parcels enter the domain and grow older during their migrations through the domain with each time step in the integration of the model. This technique was employed in a 10-member ensemble of 10-yr (1980–89) simulations with the Canadian RCM on a large domain covering North America. The residency time is treated and archived as the other simulated meteorological variables, therefore allowing computation of its climate diagnostics. These diagnostics show that the domain-averaged residency time is shorter in winter than in summer as a result of the faster winter atmospheric circulation. The residency time decreases with increasing height above the surface because of the faster atmospheric circulation at high levels dominated by the jet stream. Within the domain, the residency time increases from west to east according to the transportation of the aging tracer with the westerly general atmospheric circulation. A linear relation is found between the spatial distribution of the internal variability—computed with the variance between the ensemble members—and residency time. This relation indicates that the residency time can be used as a quantitative indicator to estimate the level of control exerted by the lateral boundary conditions on the RCM simulations.


Atmosphere ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 802 ◽  
Author(s):  
Gnim Tchalim Gnitou ◽  
Tinghuai Ma ◽  
Guirong Tan ◽  
Brian Ayugi ◽  
Isaac Kwesi Nooni ◽  
...  

Climate models are usually evaluated to understand how well the modeled data reproduce specific application-related features. In Africa, where multisource data quality is an issue, there is a need to assess climate data from a general perspective to motivate such specific types of assessment, but mostly to serve as a basis for data quality enhancement activities. In this study, we assessed the Rossby Centre Regional Climate Model (RCA4) over West Africa without targeting any application-specific feature, while jointly evaluating its boundary conditions and accounting for observational uncertainties. Results from this study revealed that the RCA4 signal highly modifies the boundary conditions (global climate models (GCMs) and reanalysis data), resulting in a significant reduction of their biases in the dynamically downscaled outputs. The results, with respect to the observational ensemble members, are in line with the differences between the observation datasets. Among the RCA4 simulations, the ensemble mean outperformed all individual simulations regardless of the statistical metric and the reference data used. This indicates that the RCA4 adds value to GCMs over West Africa, with no influence of observational uncertainty, and its ensemble mean reduces model-related uncertainties.


Sign in / Sign up

Export Citation Format

Share Document