Moist convection: a key to tropical wave–moisture interaction in Indian monsoon intraseasonal oscillation

2018 ◽  
Vol 51 (9-10) ◽  
pp. 3673-3684 ◽  
Author(s):  
Longtao Wu ◽  
Sun Wong ◽  
Tao Wang ◽  
George J. Huffman
2013 ◽  
Vol 26 (7) ◽  
pp. 2279-2287 ◽  
Author(s):  
William R. Boos ◽  
John V. Hurley

Abstract Here it is shown that almost all models participating in the Coupled Model Intercomparison Project (CMIP) exhibit a common bias in the thermodynamic structure of boreal summer monsoons. The strongest bias lies over South Asia, where the upper-tropospheric temperature maximum is too weak, is shifted southeast of its observed location, and does not extend as far west over Africa as it does in observations. Simulated Asian maxima of surface air moist static energy are also too weak and are located over coastal oceans rather than in their observed continental position. The spatial structure of this bias suggests that it is caused by an overly smoothed representation of topography west of the Tibetan Plateau, which allows dry air from the deserts of western Asia to penetrate the monsoon thermal maximum, suppressing moist convection and cooling the upper troposphere. In a climate model with a decent representation of the thermodynamic state of the Asian monsoon, the qualitative characteristics of this bias can be recreated by truncating topography just west of the Tibetan Plateau. This relatively minor topographic modification also produces a negative anomaly of Indian precipitation of similar sign and amplitude to the CMIP continental Indian monsoon precipitation bias. Furthermore, in simulations of next-century climate warming, this topographic modification reduces the amplitude of the increase in Indian monsoon precipitation. These results confirm the importance of topography west of the Tibetan Plateau for South Asian climate and illustrate the need for careful assessments of the thermodynamic state of model monsoons.


2008 ◽  
Vol 21 (23) ◽  
pp. 6119-6140 ◽  
Author(s):  
Nicholas P. Klingaman ◽  
Peter M. Inness ◽  
Hilary Weller ◽  
Julia M. Slingo

Abstract While the Indian monsoon exhibits substantial variability on interannual time scales, its intraseasonal variability (ISV) is of greater magnitude and hence of critical importance for monsoon predictability. This ISV comprises a 30–50-day northward-propagating oscillation (NPISO) between active and break events of enhanced and reduced rainfall, respectively, over the subcontinent. Recent studies have implied that coupled general circulation models (CGCMs) were better able to simulate the NPISO than their atmosphere-only counterparts (AGCMs). These studies have forced their AGCMs with SSTs from coupled integrations or observations from satellite-based infrared sounders, both of which underestimate the ISV of tropical SSTs. The authors have forced the 1.25° × 0.83° Hadley Centre Atmospheric Model (HadAM3) with a daily, high-resolution, observed SST analysis from the United Kingdom National Center for Ocean Forecasting that contains greater ISV in the Indian Ocean than past products. One ensemble of simulations was forced by daily SSTs, a second with monthly means, and a third with 5-day means. The ensemble with daily SSTs displayed significantly greater variability in 30–50-day rainfall across the monsoon domain than the ensemble with monthly mean SSTs, variability similar to satellite-derived precipitation analyses. Individual ensemble members with daily SSTs contained intraseasonal events with a strength, a propagation speed, and an organization that closely matched observed events. When ensemble members with monthly mean SSTs displayed power in intraseasonal rainfall, the events were weak and disorganized, and they propagated too quickly. The ensemble with 5-day means had less intraseasonal rainfall variability than the ensemble with daily SSTs but still produced coherent NPISO-like events, indicating that SST variability at frequencies higher than 5 days contributes to but is not critical for simulations of the NPISO. It is concluded that high-frequency SST anomalies not only increased variance in intraseasonal rainfall but helped to organize and maintain coherent NPISO-like convective events. Further, the results indicate that an AGCM can respond to realistic and frequent SST forcing to generate an NPISO that closely resembles observations. These results have important implications for simulating the NPISO in AGCMs and coupled climate models, as well as for predicting tropical ISV in short- and medium-range weather forecasts.


2011 ◽  
Vol 24 (19) ◽  
pp. 5134-5156 ◽  
Author(s):  
Charlotte A. DeMott ◽  
Cristiana Stan ◽  
David A. Randall ◽  
James L. Kinter ◽  
Marat Khairoutdinov

Three general circulation models (GCMs) are used to analyze the impacts of air–sea coupling and superparameterized (SP) convection on the Asian summer monsoon: Community Climate System Model (CCSM) (coupled, conventional convection), SP Community Atmosphere Model (SP-CAM) (uncoupled, SP convection), and SP-CCSM (coupled, SP). In SP-CCSM, coupling improves the basic-state climate relative to SP-CAM and reduces excessive tropical variability in SP-CAM. Adding SP improves tropical variability, the simulation of easterly zonal shear over the Indian and western Pacific Oceans, and increases negative sea surface temperature (SST) biases in that region. SP-CCSM is the only model to reasonably simulate the eastward-, westward-, and northward-propagating components of the Asian monsoon. CCSM and SP-CCSM mimic the observed phasing of northward-propagating intraseasonal oscillation (NPISO), SST, precipitation, and surface stress anomalies, while SP-CAM is limited in this regard. SP-CCSM produces a variety of tropical waves with spectral characteristics similar to those in observations. Simulated equatorial Rossby (ER) and mixed Rossby–gravity (MRG) waves may lead to different simulations of the NPISO in each model. Each model exhibits some northward propagation for ER waves but only SP-CCSM produces northward-propagating MRG waves, as in observations. The combination of ER and MRG waves over the Indian Ocean influences the spatiotemporal structure of the NPISO and contributes to the differences seen in each model. The role of ocean coupling must be considered in terms of the time scale of the SST response compared to the time scale of tropical variability. High-frequency disturbances experience coupling via its changes to the basic state, while lower-frequency disturbances may respond directly to SST fluctuations.


2005 ◽  
Vol 18 (7) ◽  
pp. 952-972 ◽  
Author(s):  
Hae-Kyung Lee Drbohlav ◽  
Bin Wang

Abstract The propagation and initiation mechanisms of the boreal summer intraseasonal oscillation (BSISO) in the south Asian summer monsoon are examined with a zonally symmetric atmospheric model. In the axially symmetric model the effects of zonally propagating atmospheric waves are intentionally excluded. The model specifies mean flows and depicts the lowest baroclinic mode and a barotropic mode in the free troposphere. The two vertical modes are coupled by the time-mean vertical wind shear. The model atmosphere produces a 15–20-day oscillation, which is characterized by northward propagation of convection from south of the equator to the Indian monsoon trough region and a reinitiation of convection in the region between 10°S and the equator. The northward propagation in the model is produced by the free troposphere barotropic divergence, which leads convection by about a quarter of a cycle. The vertical advection of summer-mean easterly vertical wind shear by perturbation vertical motion inside the convective region induces barotropic divergence (convergence) to the north (south) of convection. This barotropic divergence triggers the moisture convergence in the boundary layer to the north of convection, causing the northward propagation of precipitation. The development of convection in the Southern Hemisphere near the equator is also produced by the development of the barotropic divergence in the free troposphere. When the BSISO convection is located in the Indian monsoon trough region, it creates Hadley-type anomalous circulation. This Hadley-type circulation interacts with the monsoon flow through the meridional and vertical advections creating anomalous barotropic divergence and boundary layer convergence.


2014 ◽  
Vol 142 (12) ◽  
pp. 4758-4774 ◽  
Author(s):  
Daisuke Hatsuzuka ◽  
Tetsuzo Yasunari ◽  
Hatsuki Fujinami

Abstract Characteristics of low pressure systems (LPSs) responsible for submonthly-scale (7–25 days) intraseasonal oscillation (ISO) in rainfall over Bangladesh and their impact on the amplitude of active peaks are investigated for 29 summer monsoon seasons. Extreme and moderate active peaks are obtained based on the amplitude of 7–25-day-filtered rainfall series. By detecting the LPSs that formed over the Indian monsoon region, it was found that about 59% (62%) of extreme (moderate) active peaks of rainfall are related to LPSs. These LPSs have horizontal scale of about 600 km and vertical scale of about 9 km. For the extreme active peak, the locations of the LPS centers are clustered significantly over and around Bangladesh, accompanied by the maximum convergence in the southeast sector of the LPSs. After their formation, they tend to remain almost stationary over and around Bangladesh. In contrast, for the moderate active peak, the LPS centers are located over the Ganges Plain around 85°E, and the maximum convergence of the LPSs occurs around their centers. This difference in the convergence fields is closely associated with the geographical features to the north and east of Bangladesh and the horizontal scale of the LPSs. These features suggest that the amplitude of the active peaks in the submonthly-scale ISO is modulated by small differences in the locations of the LPS centers. These findings suggest that improved predictions of both genesis location and the tracks of the LPSs are crucial to forecasting seasonal rainfall over Bangladesh.


2017 ◽  
Vol 143 (703) ◽  
pp. 1073-1085 ◽  
Author(s):  
P. D. Willetts ◽  
J. H. Marsham ◽  
C. E. Birch ◽  
D. J. Parker ◽  
S. Webster ◽  
...  

2014 ◽  
Vol 142 (1) ◽  
pp. 290-300 ◽  
Author(s):  
Pengfei Zhang ◽  
Guoping Li ◽  
Xiouhua Fu ◽  
Yimin Liu ◽  
Laifang Li

Abstract Tibetan Plateau (TP) vortices and the related 10–30-day intraseasonal oscillation in May–September 1998 are analyzed using the twice-daily 500-hPa synoptic weather maps, multiple reanalysis datasets, and satellite-retrieved brightness temperature. During the analysis period, distinctively active and suppressed periods of TP vortices genesis are noticed. In 1998, nine active periods of TP vortices occurred, which were largely clustered by the cyclonic circulations associated with the intraseasonal oscillation of 500-hPa relative vorticity. In addition to the well-recognized 30–60-day oscillation, the clustering of TP vorticity in the 1998 summer are more likely modulated by the 10–30-day oscillation, because all active periods of TP vortices fall into the positive phase of the 10–30-day oscillation in 1998. Even in the negative (i.e., anticyclonic) phases of the 30–60-day oscillation, the positive (i.e., cyclonic) 500-hPa 10–30-day oscillation can excite the clustering of TP vortices. This result indicates that the 10–30-day oscillation more directly modulates the activities of TP vortices by providing a favorable (unfavorable) cyclonic (anticyclonic) environment. The analysis of the 10–30-day atmospheric oscillation suggests that the westerly trough disturbances, in conjunction with convective instability due to low-level warm advection from the Indian monsoon region, are important in the clustering of TP vortex activities. In particular, the moisture flux from the southwest boundary of TP is essential to the accumulation of convective energy. Thus, a better understanding and prediction of the 10–30-day intraseasonal oscillation is needed to advance the extended-range forecasting of TP vortices and their downstream impacts on the weather and climate over East Asia.


Sign in / Sign up

Export Citation Format

Share Document